4 resultados para biceps brachii muscle

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Delayed-onset muscle soreness (DOMS) is a common symptom in people participating in exercise, sport, or recreational physical activities. Several remedies have been proposed to prevent and alleviate DOMS. DESIGN AND METHODS A five-arm randomized controlled study was conducted to examine the effects of acupuncture on eccentric exercise-induced DOMS of the biceps brachii muscle. Participants were recruited through convenience sampling of students and general public. Participants were randomly allocated to needle, laser, sham needle, sham laser acupuncture, and no intervention. Outcome measures included pressure pain threshold (PPT), pain intensity (visual analog scale), and maximum isometric voluntary force. RESULTS Delayed-onset muscle soreness was induced in 60 participants (22 females, age 23.6 ± 2.8 years, weight 66.1 ± 9.6 kg, and height 171.6 ± 7.9 cm). Neither verum nor sham interventions significantly improved outcomes within 72 hours when compared with no treatment control (P > 0.05). CONCLUSIONS Acupuncture was not effective in the treatment of DOMS. From a mechanistic point of view, these results have implications for further studies: (1) considering the high-threshold mechanosensitive nociceptors of the muscle, the cutoff for PPT (5 kg/cm) chosen to avoid bruising might have led to ceiling effects; (2) the traditional acupuncture regimen, targeting muscle pain, might have been inappropriate as the DOMS mechanisms seem limited to the muscular unit and its innervation. Therefore, a regionally based regimen including an intensified intramuscular needling (dry needling) should be tested in future studies, using a higher cutoff for PPT to avoid ceiling effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study quantitatively investigated the analgesic action of a low-dose constant-rate-infusion (CRI) of racemic ketamine (as a 0.5 mg kg(-1) bolus and at a dose rate of 10 microg kg(-1) min(-1)) in conscious dogs using a nociceptive withdrawal reflex (NWR) and with enantioselective measurement of plasma levels of ketamine and norketamine. Withdrawal reflexes evoked by transcutaneous single and repeated electrical stimulation (10 pulses, 5 Hz) of the digital plantar nerve were recorded from the biceps femoris muscle using surface electromyography. Ketamine did not affect NWR thresholds or the recruitment curves after a single nociceptive stimulation. Temporal summation (as evaluated by repeated stimuli) and the evoked behavioural response scores were however reduced compared to baseline demonstrating the antinociceptive activity of ketamine correlated with the peak plasma concentrations. Thereafter the plasma levels at pseudo-steady-state did not modulate temporal summation. Based on these experimental findings low-dose ketamine CRI cannot be recommended for use as a sole analgesic in the dog.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to characterize the nociceptive withdrawal reflex (NWR) and to define the nociceptive threshold in 25 healthy, non-medicated experimental sheep in standing posture. Electrical stimulation of the dorsal lateral digital nerves of the right thoracic and the pelvic limb was performed and surface-electromyography (EMG) from the deltoid (all animals) and the femoral biceps (18 animals) or the peroneus tertius muscles (7 animals) was recorded. The behavioural reaction following each stimulation was scored on a scale from 0 (no reaction) to 5 (strong whole body reaction). A train-of-five 1 ms constant-current pulse was used and current intensity was stepwise increased until NWR threshold intensity was reached. The NWR threshold intensity (It) was defined as the minimal stimulus intensity able to evoke a reflex with a minimal Root-Mean-Square amplitude (RMSA) of 20 μV, a minimal duration of 10 ms and a minimal reaction score of 1 (slight muscle contraction of the stimulated limb) within the time window of 20 to 130 ms post-stimulation. Based on this value, further stimulations were performed below (0.9It) and above threshold (1.5It and 2It). The stimulus-response curve was described. Data are reported as medians and interquartile ranges. At the deltoid muscle It was 4.4 mA (2.9–5.7) with an RMSA of 62 μV (30–102). At the biceps femoris muscle It was 7.0 mA (4.0–10.0) with an RMSA of 43 μV (34–50) and at the peroneus tertius muscle It was 3.4 mA (3.1–4.4) with an RMSA of 38 μV (32–46). Above threshold, RMSA was significantly increased at all muscles. Below threshold, RMSA was only significantly smaller than at It for the peroneus tertius muscle but not for the other muscles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nociceptive withdrawal reflex (NWR) model is used in animal pain research to quantify nociception. The aim of this study was to evaluate the NWR evoked by repeated stimulations in healthy, non-medicated standing sheep. Repeated electrical stimulations were applied at 5Hz for 2s to the digital nerves of the right thoracic and the pelvic limbs of 25 standing sheep. The stimulation intensities applied were fractions (0.5, 0.6, 0.7, 0.8, 0.9 and 1) of the individual previously determined nociceptive threshold (It) after single stimulation. Surface-electromyographic activity (EMG) was recorded from the deltoid, the femoral biceps or the peroneus tertius muscles. The repeated stimulation threshold (RS It) was reached if at least one stimulus in the train was followed by a reflex with a minimal root-mean-square-amplitude (RMSA) of 20μV. The behavioural reaction following each series of stimulations was scored on a scale from 0 (no reaction) to 5 (vigorous whole-body reaction). For the deltoid muscle, RS It was 2.3mA (1.6-3mA) with a reaction score of 2 (1-2) and at a fraction of 0.6 (0.5-0.8)×It. For the biceps femoris muscle, RS It was 2.9mA (2.6-4mA) with a reaction score of 1 (1-2) at a fraction of and 0.55 (0.4-0.7)×It while for the peroneus tertius muscle RS It was 3mA (2.8-3.5mA) with a reaction score of 1 (1-2) and at a fraction of 0.8 (0.8-0.95)×It. Both, RMSA and reaction scores increased significantly with increasing stimulation intensities in all muscles (p<0.001). The repeated application of electrical stimuli led to temporal summation of nociceptive inputs and therefore a reduction of the stimulus intensity evoking a withdrawal reaction in healthy, standing sheep. Data achieved in this study can now serve as reference for further clinical or experimental applications of the model in this species.