46 resultados para basolateral amygdala

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The amygdala has been studied extensively for its critical role in associative fear conditioning in animals and humans. Noxious stimuli, such as those used for fear conditioning, are most effective in eliciting behavioral responses and amygdala activation when experienced in an unpredictable manner. Here, we show, using a translational approach in mice and humans, that unpredictability per se without interaction with motivational information is sufficient to induce sustained neural activity in the amygdala and to elicit anxiety-like behavior. Exposing mice to mere temporal unpredictability within a time series of neutral sound pulses in an otherwise neutral sensory environment increased expression of the immediate-early gene c-fos and prevented rapid habituation of single neuron activity in the basolateral amygdala. At the behavioral level, unpredictable, but not predictable, auditory stimulation induced avoidance and anxiety-like behavior. In humans, functional magnetic resonance imaging revealed that temporal unpredictably causes sustained neural activity in amygdala and anxiety-like behavior as quantified by enhanced attention toward emotional faces. Our findings show that unpredictability per se is an important feature of the sensory environment influencing habituation of neuronal activity in amygdala and emotional behavior and indicate that regulation of amygdala habituation represents an evolutionary-conserved mechanism for adapting behavior in anticipation of temporally unpredictable events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently reported that brief, remotely controlled intrameal hepatic-portal vein infusions of glucagon-like peptide-1 (GLP-1) reduced spontaneous meal size in rats. To investigate the neurobehavioural correlates of this effect, we equipped male Sprague-Dawley rats with hepatic-portal vein catheters and assessed (i) the effect on eating of remotely triggered infusions of GLP-1 (1 nmol/kg, 5 min) or vehicle during the first nocturnal meal after 3 h of food deprivation and (ii) the effect of identical infusions performed at dark onset on c-Fos expression in several brain areas involved in the control of eating. GLP-1 reduced (P < 0.05) the size of the first nocturnal meal and increased its satiety ratio. Also, GLP-1 increased (P < 0.05) the number of c-Fos-expressing cells in the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala, but not in the arcuate or paraventricular hypothalamic nuclei. These data suggest that the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala play a role in the eating-inhibitory actions of GLP-1 infused into the hepatic-portal vein; it remains to be established whether activation of these brain nuclei reflect satiation, aversion, or both.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence from animal and human studies imply the amygdala as the most critical structure involved in processing of fear-relevant stimuli. In phobias, the amygdala seems to play a crucial role in the pathogenesis and maintenance of the disorder. However, the neuropathology of specific phobias remains poorly understood. In the present study, we investigated whether patients with spider phobia show altered amygdala volumes as compared to healthy control subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) of different nuclei is being evaluated as a treatment for epilepsy. While encouraging results have been reported, the effects of changes in stimulation parameters have been poorly studied. Here the effects of changes of pulse waveform in high frequency DBS (130 Hz) of the amygdala-hippocampal complex (AH) are presented. These effects were studied on interictal epileptic discharge rates (IEDRs). AH-DBS was implemented with biphasic versus pseudo monophasic charge balanced pulses, in two groups of patients: six with temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (HS) and six with non lesional (NLES) temporal epilepsy. In patients with HS, IEDRs were significantly reduced with AH-DBS applied with biphasic pulses in comparison with monophasic pulse. IEDRs were significantly reduced in only two patients with NLES independently to stimulus waveform. Comparison to long-term seizure outcome suggests that IEDRs could be used as a neurophysiological marker of chronic AH-DBS and they suggest that the waveform of the electrical stimuli can play a major role in DBS. We concluded that biphasic stimuli are more efficient than pseudo monophasic pulses in AH-DBS in patients with HS. In patients with NLES epilepsy, other parameters relevant for efficacy of DBS remain to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pavlovian fear conditioning, a simple form of associative learning, is thought to involve the induction of associative, NMDA receptor-dependent long-term potentiation (LTP) in the lateral amygdala. Using a combined genetic and electrophysiological approach, we show here that lack of a specific GABA(B) receptor subtype, GABA(B(1a,2)), unmasks a nonassociative, NMDA receptor-independent form of presynaptic LTP at cortico-amygdala afferents. Moreover, the level of presynaptic GABA(B(1a,2)) receptor activation, and hence the balance between associative and nonassociative forms of LTP, can be dynamically modulated by local inhibitory activity. At the behavioral level, genetic loss of GABA(B(1a)) results in a generalization of conditioned fear to nonconditioned stimuli. Our findings indicate that presynaptic inhibition through GABA(B(1a,2)) receptors serves as an activity-dependent constraint on the induction of homosynaptic plasticity, which may be important to prevent the generalization of conditioned fear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human subjects overestimate the change of rising intensity sounds compared with falling intensity sounds. Rising sound intensity has therefore been proposed to be an intrinsic warning cue. In order to test this hypothesis, we presented rising, falling, and constant intensity sounds to healthy humans and gathered psychophysiological and behavioral responses. Brain activity was measured using event-related functional magnetic resonance imaging. We found that rising compared with falling sound intensity facilitates autonomic orienting reflex and phasic alertness to auditory targets. Rising intensity sounds produced neural activity in the amygdala, which was accompanied by activity in intraparietal sulcus, superior temporal sulcus, and temporal plane. Our results indicate that rising sound intensity is an elementary warning cue eliciting adaptive responses by recruiting attentional and physiological resources. Regions involved in cross-modal integration were activated by rising sound intensity, while the right-hemisphere phasic alertness network could not be supported by this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In schizophrenic psychoses, structural and functional alterations of the amygdala have been demonstrated by several neuroimaging studies. However, postmortem examinations on the brains of schizophrenics did not confirm the volume changes reported by volumetric magnetic resonance imaging (MRI) studies. In order to address these contradictory findings and to further elucidate the possibly underlying pathophysiological process of the amygdala, we employed a trimodal MRI design including high-resolution volumetry, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) in a sample of 14 schizophrenic patients and 14 matched controls. Three-dimensional MRI volumetry revealed a significant reduction of amygdala raw volumes in the patient group, while amygdala volumes normalized for intracranial volume did not differ between the two groups. The regional diffusional anisotropy of the amygdala, expressed as inter-voxel coherence (COH), showed a marked and significant reduction in schizophrenics. Assessment of qMTI parameters yielded significant group differences for the T2 time of the bound proton pool and the T1 time of the free proton pool, while the semi-quantitative magnetization transfer ratio (MTR) did not differ between the groups. The application of multimodal MRI protocols is diagnostically relevant for the differentiation between schizophrenic patients and controls and provides a new strategy for the detection and characterization of subtle structural alterations in defined regions of the living brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in EEG synchronization, i.e., spatio-temporal correlation, with amygdala-hippocampal stimulation were studied in patients with temporal lobe epilepsy. Synchronization was evaluated for high frequency, 130Hz, pseudo-monophasic or biphasic charge-balanced pulses. Desynchronization was most frequently induced by stimulation. There was no correlation between the changes in synchronization and the changes in interictal epileptiform discharge rates. Changes in synchronization do not appear yet to be a marker of stimulation efficiency in reducing seizures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cognitive–behavioural therapy is efficacious in the treatment of major depressive disorder but response rates are still far from satisfactory. Aims: To better understand brain responses to individualised emotional stimuli and their association with outcome, to enhance treatment. Method: Functional magnetic resonance imaging data were collected prior to individual psychotherapy. Differences in brain activity during passive viewing of individualised self-critical material in 23 unmedicated out-patients with depression and 28 healthy controls were assessed. The associations between brain activity, cognitive and emotional change, and outcome were analysed in 21 patients. Results: Patients showed enhanced activity in the amygdala and ventral striatum compared with the control group. Non-response to therapy was associated with enhanced activity in the right amygdala compared with those who responded, and activity in this region was negatively associated with outcome. Emotional but not cognitive changes mediated this association. Conclusions: Amygdala hyperactivity may lessen symptom improvement in psychotherapy for depression through attenuating emotional skill acquisition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NHA2 was recently identified as a novel sodium/hydrogen exchanger which is strongly upregulated during RANKL-induced osteoclast differentiation. Previous in vitro studies suggested that NHA2 is a mitochondrial transporter required for osteoclast differentiation and bone resorption. Due to the lack of suitable antibodies, NHA2 was studied only on RNA level thus far. To define the protein's role in osteoclasts in vitro and in vivo, we generated NHA2-deficient mice and raised several specific NHA2 antibodies. By confocal microscopy and subcellular fractionation studies, NHA2 was found to co-localize with the late endosomal and lysosomal marker LAMP1 and the V-ATPase a3 subunit, but not with mitochondrial markers. Immunofluorescence studies and surface biotinylation experiments further revealed that NHA2 was highly enriched in the plasma membrane of osteoclasts, localizing to the basolateral membrane of polarized osteoclasts. Despite strong upregulation of NHA2 during RANKL-induced osteoclast differentiation, however, structural parameters of bone, quantified by high-resolution microcomputed tomography, were not different in NHA2-deficient mice compared to wild-type littermates. In addition, in vitro RANKL stimulation of bone marrow cells isolated from wild-type and NHA2-deficient mice yielded no differences in osteoclast development and activity. Taken together, we show that NHA2 is a RANKL-induced plasmalemmal sodium/hydrogen exchanger in osteoclasts. However, our data from NHA2-deficient mice suggest that NHA2 is dispensable for osteoclast differentiation and bone resorption both in vitro and in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Economic theory distinguishes two concepts of utility: decision utility, objectively quantifiable by choices, and experienced utility, referring to the satisfaction by an obtainment. To date, experienced utility is typically measured with subjective ratings. This study intended to quantify experienced utility by global levels of neuronal activity. Neuronal activity was measured by means of electroencephalographic (EEG) responses to gain and omission of graded monetary rewards at the level of the EEG topography in human subjects. A novel analysis approach allowed approximating psychophysiological value functions for the experienced utility of monetary rewards. In addition, we identified the time windows of the event-related potentials (ERP) and the respective intracortical sources, in which variations in neuronal activity were significantly related to the value or valence of outcomes. Results indicate that value functions of experienced utility and regret disproportionally increase with monetary value, and thus contradict the compressing value functions of decision utility. The temporal pattern of outcome evaluation suggests an initial (∼250 ms) coarse evaluation regarding the valence, concurrent with a finer-grained evaluation of the value of gained rewards, whereas the evaluation of the value of omitted rewards emerges later. We hypothesize that this temporal double dissociation is explained by reward prediction errors. Finally, a late, yet unreported, reward-sensitive ERP topography (∼500 ms) was identified. The sources of these topographical covariations are estimated in the ventromedial prefrontal cortex, the medial frontal gyrus, the anterior and posterior cingulate cortex and the hippocampus/amygdala. The results provide important new evidence regarding “how,” “when,” and “where” the brain evaluates outcomes with different hedonic impact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterovirus is the most common pathogen causing viral meningitis especially in children. Besides the blood-brain barrier (BBB) the choroid plexus, which forms the blood-cerebrospinal-fluid (CSF) barrier (BCSFB), was shown to be involved in the pathogenesis of enteroviral meningitis. In a human in vitro model of the BCSFB consisting of human choroid plexus papilloma cells (HIBCPP), the permissiveness of plexus epithelial cells for Echovirus 30 (EV30) was analyzed by immunoblotting and quantitative real-time PCR (Q-PCR). HIBCPP could be directly infected by EV30 from the apical as well as from the physiological relevant basolateral side. During an infection period of 5h no alterations of barrier function and cell viability could be observed. Analysis of the cytokine/chemokine-profile following enteroviral infection with a cytometric bead array (CBA) and Q-PCR revealed an enhanced secretion of PanGRO (CXCL1, CXCL2 and CXCL3), IL8 and CCL5. Q-PCR showed a significant upregulation of CXCL1, CXCL2 and CXCL3 in a time dependant manner. However, there was only a minor effect of HIBCPP-infection with EV30 on transepithelial T lymphocyte migration with or without the chemoattractant CXCL12. Moreover, CXCL3 did not significantly enhance T cell migrations. Therefore additional factors must be involved for the in vivo reported enhanced T cell migration into the CNS in the context of enteroviral meningitis. As HIBCPP are permissive for infection with EV30, they constitute a valuable human in vitro model to study viral infection at the BCSFB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allelic variants of the human P-glycoprotein encoding gene MDR1 (ABCB1) are discussed to be associated with different clinical conditions including pharmacoresistance of epilepsy. However, conflicting data have been reported with regard to the functional relevance of MDR1 allelic variants for the response to antiepileptic drugs. To our knowledge, it is not known whether functionally relevant genetic polymorphisms also occur in the two genes (Mdr1a/Abcb1a, Mdr1b/Abcb1b) coding for P-glycoprotein in the brain of rodents. Therefore, we have started to search for polymorphisms in the Mdr1a gene, which governs the expression of P-glycoprotein in brain capillary endothelial cells in rats. In the kindling model of temporal lobe epilepsy, subgroups of phenytoin-sensitive and phenytoin-resistant rats were selected in repeated drug trials. Sequencing of the Mdr1a gene coding sequence in the subgroups revealed no general differences between drug-resistant and drug-sensitive rats of the Wistar outbred strain. A comparison between different inbred and outbred rat strains also gave no evidence for polymorphisms in the Mdr1a coding sequence. However, in exon-flanking intron sequences, four genetic variants were identified by comparison between these rats strains. In conclusion, the finding that Wistar rats vary in their response to phenytoin, while having the same genetic background, argues against a major impact of Mdr1a genetics on pharmacosensitivity to antiepileptic drugs in the amygdala kindling model.