9 resultados para auto-logistic models
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES: This paper is concerned with checking goodness-of-fit of binary logistic regression models. For the practitioners of data analysis, the broad classes of procedures for checking goodness-of-fit available in the literature are described. The challenges of model checking in the context of binary logistic regression are reviewed. As a viable solution, a simple graphical procedure for checking goodness-of-fit is proposed. METHODS: The graphical procedure proposed relies on pieces of information available from any logistic analysis; the focus is on combining and presenting these in an informative way. RESULTS: The information gained using this approach is presented with three examples. In the discussion, the proposed method is put into context and compared with other graphical procedures for checking goodness-of-fit of binary logistic models available in the literature. CONCLUSION: A simple graphical method can significantly improve the understanding of any logistic regression analysis and help to prevent faulty conclusions.
Resumo:
BACKGROUND We aimed to assess whether elderly patients with acute venous thromboembolism (VTE) receive recommended initial processes of care and to identify predictors of process adherence. METHODS We prospectively studied in- and outpatients aged ≥65 years with acute symptomatic VTE in a multicenter cohort study from nine Swiss university- and non-university hospitals between September 2009 and March 2011. We systematically assessed whether initial processes of care, which are recommended by the 2008 American College of Chest Physicians guidelines, were performed in each patient. We used multivariable logistic models to identify patient factors independently associated with process adherence. RESULTS Our cohort comprised 950 patients (mean age 76 years). Of these, 86% (645/750) received parenteral anticoagulation for ≥5 days, 54% (405/750) had oral anticoagulation started on the first treatment day, and 37% (274/750) had an international normalized ratio (INR) ≥2 for ≥24 hours before parenteral anticoagulation was discontinued. Overall, 35% (53/153) of patients with cancer received low-molecular-weight heparin monotherapy and 72% (304/423) of patients with symptomatic deep vein thrombosis were prescribed compression stockings. In multivariate analyses, symptomatic pulmonary embolism, hospital-acquired VTE, and concomitant antiplatelet therapy were associated with a significantly lower anticoagulation-related process adherence. CONCLUSIONS Adherence to several recommended processes of care was suboptimal in elderly patients with VTE. Quality of care interventions should particularly focus on processes with low adherence, such as the prescription of continued low-molecular-weight heparin therapy in patients with cancer and the achievement of an INR ≥2 for ≥24 hours before parenteral anticoagulants are stopped.
Resumo:
Objective: Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. Method: TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. Results: TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. Conclusions: TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy.
Resumo:
Background Surgical risk scores, such as the logistic EuroSCORE (LES) and Society of Thoracic Surgeons Predicted Risk of Mortality (STS) score, are commonly used to identify high-risk or “inoperable” patients for transcatheter aortic valve implantation (TAVI). In Europe, the LES plays an important role in selecting patients for implantation with the Medtronic CoreValve System. What is less clear, however, is the role of the STS score of these patients and the relationship between the LES and STS. Objective The purpose of this study is to examine the correlation between LES and STS scores and their performance characteristics in high-risk surgical patients implanted with the Medtronic CoreValve System. Methods All consecutive patients (n = 168) in whom a CoreValve bioprosthesis was implanted between November 2005 and June 2009 at 2 centers (Bern University Hospital, Bern, Switzerland, and Erasmus Medical Center, Rotterdam, The Netherlands) were included for analysis. Patient demographics were recorded in a prospective database. Logistic EuroSCORE and STS scores were calculated on a prospective and retrospective basis, respectively. Results Observed mortality was 11.1%. The mean LES was 3 times higher than the mean STS score (LES 20.2% ± 13.9% vs STS 6.7% ± 5.8%). Based on the various LES and STS cutoff values used in previous and ongoing TAVI trials, 53% of patients had an LES ≥15%, 16% had an STS ≥10%, and 40% had an LES ≥20% or STS ≥10%. Pearson correlation coefficient revealed a reasonable (moderate) linear relationship between the LES and STS scores, r = 0.58, P < .001. Although the STS score outperformed the LES, both models had suboptimal discriminatory power (c-statistic, 0.49 for LES and 0.69 for STS) and calibration. Conclusions Clinical judgment and the Heart Team concept should play a key role in selecting patients for TAVI, whereas currently available surgical risk score algorithms should be used to guide clinical decision making.
Resumo:
Milk cortisol concentration was determined under routine management conditions on 4 farms with an auto-tandem milking parlor and 8 farms with 1 of 2 automatic milking systems (AMS). One of the AMS was a partially forced (AMSp) system, and the other was a free cow traffic (AMSf) system. Milk samples were collected for all the cows on a given farm (20 to 54 cows) for at least 1 d. Behavioral observations were made during the milking process for a subset of 16 to 20 cows per farm. Milk cortisol concentration was evaluated by milking system, time of day, behavior during milking, daily milk yield, and somatic cell count using linear mixed-effects models. Milk cortisol did not differ between systems (AMSp: 1.15 +/- 0.07; AMSf: 1.02 +/- 0.12; auto-tandem parlor: 1.01 +/- 0.16 nmol/L). Cortisol concentrations were lower in evening than in morning milkings (1.01 +/- 0.12 vs. 1.24 +/- 0.13 nmol/L). The daily periodicity of cortisol concentration was characterized by an early morning peak and a late afternoon elevation in AMSp. A bimodal pattern was not evident in AMSf. Finally, milk cortisol decreased by a factor of 0.915 in milking parlors, by 0.998 in AMSp, and increased by a factor of 1.161 in AMSf for each unit of ln(somatic cell count/1,000). We conclude that milking cows in milking parlors or AMS does not result in relevant stress differences as measured by milk cortisol concentrations. The biological relevance of the difference regarding the daily periodicity of milk cortisol concentrations observed between the AMSp and AMSf needs further investigation.
Resumo:
A patient-specific surface model of the proximal femur plays an important role in planning and supporting various computer-assisted surgical procedures including total hip replacement, hip resurfacing, and osteotomy of the proximal femur. The common approach to derive 3D models of the proximal femur is to use imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI). However, the high logistic effort, the extra radiation (CT-imaging), and the large quantity of data to be acquired and processed make them less functional. In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific model of the proximal femur from intra-operatively available sparse data. Results of experiments performed on dry cadaveric bones using dozens of 3D points are presented, as well as experiments using a limited number of 2D X-ray images, which demonstrate promising accuracy of the present approach.
Resumo:
OBJECTIVES This study sought to validate the Logistic Clinical SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) score in patients with non-ST-segment elevation acute coronary syndromes (ACS), in order to further legitimize its clinical application. BACKGROUND The Logistic Clinical SYNTAX score allows for an individualized prediction of 1-year mortality in patients undergoing contemporary percutaneous coronary intervention. It is composed of a "Core" Model (anatomical SYNTAX score, age, creatinine clearance, and left ventricular ejection fraction), and "Extended" Model (composed of an additional 6 clinical variables), and has previously been cross validated in 7 contemporary stent trials (>6,000 patients). METHODS One-year all-cause death was analyzed in 2,627 patients undergoing percutaneous coronary intervention from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial. Mortality predictions from the Core and Extended Models were studied with respect to discrimination, that is, separation of those with and without 1-year all-cause death (assessed by the concordance [C] statistic), and calibration, that is, agreement between observed and predicted outcomes (assessed with validation plots). Decision curve analyses, which weight the harms (false positives) against benefits (true positives) of using a risk score to make mortality predictions, were undertaken to assess clinical usefulness. RESULTS In the ACUITY trial, the median SYNTAX score was 9.0 (interquartile range 5.0 to 16.0); approximately 40% of patients had 3-vessel disease, 29% diabetes, and 85% underwent drug-eluting stent implantation. Validation plots confirmed agreement between observed and predicted mortality. The Core and Extended Models demonstrated substantial improvements in the discriminative ability for 1-year all-cause death compared with the anatomical SYNTAX score in isolation (C-statistics: SYNTAX score: 0.64, 95% confidence interval [CI]: 0.56 to 0.71; Core Model: 0.74, 95% CI: 0.66 to 0.79; Extended Model: 0.77, 95% CI: 0.70 to 0.83). Decision curve analyses confirmed the increasing ability to correctly identify patients who would die at 1 year with the Extended Model versus the Core Model versus the anatomical SYNTAX score, over a wide range of thresholds for mortality risk predictions. CONCLUSIONS Compared to the anatomical SYNTAX score alone, the Core and Extended Models of the Logistic Clinical SYNTAX score more accurately predicted individual 1-year mortality in patients presenting with non-ST-segment elevation acute coronary syndromes undergoing percutaneous coronary intervention. These findings support the clinical application of the Logistic Clinical SYNTAX score.
An Early-Warning System for Hypo-/Hyperglycemic Events Based on Fusion of Adaptive Prediction Models
Resumo:
Introduction: Early warning of future hypoglycemic and hyperglycemic events can improve the safety of type 1 diabetes mellitus (T1DM) patients. The aim of this study is to design and evaluate a hypoglycemia / hyperglycemia early warning system (EWS) for T1DM patients under sensor-augmented pump (SAP) therapy. Methods: The EWS is based on the combination of data-driven online adaptive prediction models and a warning algorithm. Three modeling approaches have been investigated: (i) autoregressive (ARX) models, (ii) auto-regressive with an output correction module (cARX) models, and (iii) recurrent neural network (RNN) models. The warning algorithm performs postprocessing of the models′ outputs and issues alerts if upcoming hypoglycemic/hyperglycemic events are detected. Fusion of the cARX and RNN models, due to their complementary prediction performances, resulted in the hybrid autoregressive with an output correction module/recurrent neural network (cARN)-based EWS. Results: The EWS was evaluated on 23 T1DM patients under SAP therapy. The ARX-based system achieved hypoglycemic (hyperglycemic) event prediction with median values of accuracy of 100.0% (100.0%), detection time of 10.0 (8.0) min, and daily false alarms of 0.7 (0.5). The respective values for the cARX-based system were 100.0% (100.0%), 17.5 (14.8) min, and 1.5 (1.3) and, for the RNN-based system, were 100.0% (92.0%), 8.4 (7.0) min, and 0.1 (0.2). The hybrid cARN-based EWS presented outperforming results with 100.0% (100.0%) prediction accuracy, detection 16.7 (14.7) min in advance, and 0.8 (0.8) daily false alarms. Conclusion: Combined use of cARX and RNN models for the development of an EWS outperformed the single use of each model, achieving accurate and prompt event prediction with few false alarms, thus providing increased safety and comfort.
Resumo:
OBJECTIVES This study aimed to update the Logistic Clinical SYNTAX score to predict 3-year survival after percutaneous coronary intervention (PCI) and compare the performance with the SYNTAX score alone. BACKGROUND The SYNTAX score is a well-established angiographic tool to predict long-term outcomes after PCI. The Logistic Clinical SYNTAX score, developed by combining clinical variables with the anatomic SYNTAX score, has been shown to perform better than the SYNTAX score alone in predicting 1-year outcomes after PCI. However, the ability of this score to predict long-term survival is unknown. METHODS Patient-level data (N = 6,304, 399 deaths within 3 years) from 7 contemporary PCI trials were analyzed. We revised the overall risk and the predictor effects in the core model (SYNTAX score, age, creatinine clearance, and left ventricular ejection fraction) using Cox regression analysis to predict mortality at 3 years. We also updated the extended model by combining the core model with additional independent predictors of 3-year mortality (i.e., diabetes mellitus, peripheral vascular disease, and body mass index). RESULTS The revised Logistic Clinical SYNTAX models showed better discriminative ability than the anatomic SYNTAX score for the prediction of 3-year mortality after PCI (c-index: SYNTAX score, 0.61; core model, 0.71; and extended model, 0.73 in a cross-validation procedure). The extended model in particular performed better in differentiating low- and intermediate-risk groups. CONCLUSIONS Risk scores combining clinical characteristics with the anatomic SYNTAX score substantially better predict 3-year mortality than the SYNTAX score alone and should be used for long-term risk stratification of patients undergoing PCI.