6 resultados para atomic order transformation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

If we postulate a need for the transformation of society towards sustainable development, we also need to transform science and overcome the fact/value split that makes it impossible for science to be accountable to society. The orientation of this paradigm transformation in science has been under debate for four decades, generating important theoretical concepts, but they have had limited impact until now. This is due to a contradictory normative science policy framing that science has difficulties dealing with, not least of all because the dominant framing creates a lock-in. We postulate that in addition to introducing transdisciplinarity, science needs to strive for integration of the normative aspect of sustainable development at the meta-level. This requires a strategically managed niche within which scholars and practitioners from many different disciplines can engage in a long-term common learning process, in order to become a “thought collective” (Fleck) capable of initiating the paradigm transformation. Arguing with Piaget that “decentration” is essential to achieve normative orientation and coherence in a learning collective, we introduce a learning approach—Cohn's “Theme-Centred Interaction”—which provides a methodology for explicitly working with the objectivity and subjectivity of statements and positions in a “real-world” context, and for consciously integrating concerns of individuals in their interdependence with the world. This should enable a thought collective to address the epistemological and ethical barriers to science for sustainable development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translocation factor EF-G, possesses a low basal GTPase activity, which is stimulated by the ribosome. One potential region of the ribosome that triggers GTPase activity of EF-G is the Sarcin-Ricin-Loop (SRL) (helix 95) in domain VI of the 23S rRNA. Structural data showed that the tip of the SRL closely approaches GTP in the active center of EF-G, structural probing data confirmed that EF-G interacts with nucleotides G2655, A2660, G2661 and A2662.1-3 The exocyclic group of adenine at A2660 is required for stimulation of EF-G GTPase activity by the ribosome as demonstrated using atomic mutagenesis.4 Recent crystal structures of EF-G on the ribosome, gave more insights into the molecular mechanism of EF-G GTPase activity.5 Based on the structure of EF-Tu on the ribosome1, the following mechanism of GTPase activation was proposed: upon binding of EF-G to the ribosome, the conserved His92 (E.coli) changes its position, pointing to the γ-phosphate of GTP. In this activated state, the phosphate of residue A2662 of the SRL positions the catalytic His in its active conformation. It was further proposed that the phosphate oxygen of A2662 is involved in a charge-relay system, enabling GTP hydrolysis. In order to test this mechanism, we use the atomic mutagenesis approach, which allows introducing non-natural modifications in the SRL, in the context of the complete 70S ribosome. Therefore, we replaced one of the non-bridging oxygens of A2662 by a methyl group. A methylphosphonat is not able to position or activate a histidine, as it has no free electrons and therefore no proton acceptor function. These modified ribosomes were then tested for stimulation of EF-G GTPase activity. First experiments show that one of the two stereoisomers incorporated into ribosomes does not stimulate GTPase activity of EF-G, whereas the other is active. From this we conclude that indeed the non-bridging phosphate oxygen of A2662 is involved in EF-G GTPase activation by the ribosome. Ongoing experiments aim at revealing the contribution of this non-bridging oxygen at A2662 to the mechanism of EF-G GTPase activation at the atomic level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translocation factor EF-G, possesses a low basal GTPase activity, which is stimulated by the ribosome. One potential region of the ribosome that triggers GTPase activity of EF-G is the Sarcin-Ricin-Loop (SRL) (helix 95) in domain VI of the 23S rRNA. Structural data showed that the tip of the SRL closely approaches GTP in the active center of EF-G, structural probing data confirmed that EF-G interacts with nucleotides G2655, A2660, G2661 and A2662.1-3 The exocyclic group of adenine at A2660 is required for stimulation of EF-G GTPase activity by the ribosome as demonstrated using atomic mutagenesis.4 Recent crystal structures of EF-G on the ribosome, gave more insights into the molecular mechanism of EF-G GTPase activity.5 Based on the structure of EF-Tu on the ribosome1, the following mechanism of GTPase activation was proposed: upon binding of EF-G to the ribosome, the conserved His92 (E.coli) changes its position, pointing to the γ-phosphate of GTP. In this activated state, the phosphate of residue A2662 of the SRL positions the catalytic His in its active conformation. It was further proposed that the phosphate oxygen of A2662 is involved in a charge-relay system, enabling GTP hydrolysis. In order to test this mechanism, we use the atomic mutagenesis approach, which allows introducing non-natural modifications in the SRL, in the context of the complete 70S ribosome. Therefore, we replaced one of the non-bridging oxygens of A2662 by a methyl group. A methylphosphonat is not able to position or activate a histidine, as it has no free electrons and therefore no proton acceptor function. These modified ribosomes were then tested for stimulation of EF-G GTPase activity. First experiments show that one of the two stereoisomers incorporated into ribosomes does not stimulate GTPase activity of EF-G, whereas the other is active. From this we conclude that indeed the non-bridging phosphate oxygen of A2662 is involved in EF-G GTPase activation by the ribosome. Ongoing experiments aim at revealing the contribution of this non-bridging oxygen at A2662 to the mechanism of EF-G GTPase activation at the atomic level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the purpose of rational design of optical materials, distributed atomic polarizabilities of amino acid molecules and their hydrogen-bonded aggregates are calculated in order to identify the most efficient functional groups, able to buildup larger electric susceptibilities in crystals. Moreover, we carefully analyze how the atomic polarizabilities depend on the one-electron basis set or the many-electron Hamiltonian, including both wave function and density functional theory methods. This is useful for selecting the level of theory that best combines high accuracy and low computational costs, very important in particular when using the cluster method to estimate susceptibilities of molecular-based materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper demonstrates a mixed approach to the theme of the instrumentality of law by both analysing the goal of a legal transformation and the techniques adapted to achieve it. The correct recognition of a certain practical necessity has lead the Swiss Federal Tribunal to an intriguing judgement “Fussballclub Lohn-Fall” of 1997. The legal remedies provided for cases of unfair advantage have been then creatively modified praeter legem. The adaptation was strongly influenced by foreign legal patterns. The Swiss Code of Obligations of 1911 provides a norm in art. 21 on unfair advantage (unconscionable contract), prescribing that if one party takes unjustified advantage over the weaknesses of another in order to receive an excessive benefit, such a contract is avoidable. Its wording has been shaped over a hundred years ago and still remains intact. However, over the course of the 20th century the necessity for a more efficient protection has arisen. The legal doctrine and jurisprudence were constantly pointing out the incompleteness of the remedies provided by art. 21 of the Code of Obligations. In the “Fussballclub Lohn-Fall” (BGE 123 III 292) the Swiss Federal Tribunal finally introduced the possibility to modify the contract. Its decision has been described as “a sign of the zeitgeist, spirit of the time”. It was the Swiss legal doctrine that has imposed the new measure under the influence of the German “quantitative Teilnichtigkeit” (quantitative partial nullity). The historical heritage of the Roman laesio enormis has also played its role.