13 resultados para articulated motion structure learning

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Perceptual learning can occur when stimuli are only imagined, i.e., without proper stimulus presentation. For example, perceptual learning improved bisection discrimination when only the two outer lines of the bisection stimulus were presented and the central line had to be imagined. Performance improved also with other static stimuli. In non-learning imagery experiments, imagining static stimuli is different from imagining motion stimuli. We hypothesized that those differences also affect imagery perceptual learning. Here, we show that imagery training also improves motion direction discrimination. Learning occurs when no stimulus at all is presented during training, whereas no learning occurs when only noise is presented. The interference between noise and mental imagery possibly hinders learning. For static bisection stimuli, the pattern is just the opposite. Learning occurs when presented with the two outer lines of the bisection stimulus, i.e., with only a part of the visual stimulus, while no learning occurs when no stimulus at all is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a general workflow for the registration of terrestrial radar interferometric data with 3D point clouds derived from terrestrial photogrammetry and structure from motion. After the determination of intrinsic and extrinsic orientation parameters, data obtained by terrestrial radar interferometry were projected on point clouds and then on the initial photographs. Visualisation of slope deformation measurements on photographs provides an easily understandable and distributable information product, especially of inaccessible target areas such as steep rock walls or in rockfall run-out zones. The suitability and error propagation of the referencing steps and final visualisation of four approaches are compared: (a) the classic approach using a metric camera and stereo-image photogrammetry; (b) images acquired with a metric camera, automatically processed using structure from motion; (c) images acquired with a digital compact camera, processed with structure from motion; and (d) a markerless approach, using images acquired with a digital compact camera using structure from motion without artificial ground control points. The usability of the completely markerless approach for the visualisation of high-resolution radar interferometry assists the production of visualisation products for interpretation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This publication offers concrete suggestions for implementing an integrative and learning-oriented approach to agricultural extension with the goal of fostering sustainable development. It targets governmental and non-governmental organisations, development agencies, and extension staff working in the field of rural development. The book looks into the conditions and trends that influence extension today, and outlines new challenges and necessary adaptations. It offers a basic reflection on the goals, the criteria for success and the form of a state-of-the-art approach to extension. The core of the book consists of a presentation of Learning for Sustainability (LforS), an example of an integrative, learning-oriented approach that is based on three crucial elements: stakeholder dialogue, knowledge management, and organizational development. Awareness raising and capacity building, social mobilization, and monitoring & evaluation are additional building blocks. The structure and organisation of the LforS approach as well as a selection of appropriate methods and tools are presented. The authors also address key aspects of developing and managing a learning-oriented extension approach. The book illustrates how LforS can be implemented by presenting two case studies, one from Madagascar and one from Mongolia. It addresses conceptual questions and at the same time it is practice-oriented. In contrast to other extension approaches, LforS does not limit its focus to production-related aspects and the development of value chains: it also addresses livelihood issues in a broad sense. With its focus on learning processes LforS seeks to create a better understanding of the links between different spheres and different levels of decision-making; it also seeks to foster integration of the different actors’ perspectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synapses of hippocampal neurons play important roles in learning and memory processes and are involved in aberrant hippocampal function in temporal lobe epilepsy. Major neuronal types in the hippocampus as well as their input and output synapses are well known, but it has remained an open question to what extent conventional electron microscopy (EM) has provided us with the real appearance of synaptic fine structure under in vivo conditions. There is reason to assume that conventional aldehyde fixation and dehydration lead to protein denaturation and tissue shrinkage, likely associated with the occurrence of artifacts. However, realistic fine-structural data of synapses are required for our understanding of the transmission process and for its simulation. Here, we used high-pressure freezing and cryosubstitution of hippocampal tissue that was not subjected to aldehyde fixation and dehydration in ethanol to monitor the fine structure of an identified synapse in the hippocampal CA3 region, that is, the synapse between granule cell axons, the mossy fibers, and the proximal dendrites of CA3 pyramidal neurons. Our results showed that high-pressure freezing nicely preserved ultrastructural detail of this particular synapse and allowed us to study rapid structural changes associated with synaptic plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the complex structure of the brain, how can synaptic plasticity explain the learning and forgetting of associations when these are continuously changing? We address this question by studying different reinforcement learning rules in a multilayer network in order to reproduce monkey behavior in a visuomotor association task. Our model can only reproduce the learning performance of the monkey if the synaptic modifications depend on the pre- and postsynaptic activity, and if the intrinsic level of stochasticity is low. This favored learning rule is based on reward modulated Hebbian synaptic plasticity and shows the interesting feature that the learning performance does not substantially degrade when adding layers to the network, even for a complex problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated perceptual learning in self-motion perception. Blindfolded participants were displaced leftward or rightward by means of a motion platform and asked to indicate the direction of motion. A total of eleven participants underwent 3,360 practice trials, distributed over twelve (Experiment 1) or 6 days (Experiment 2). We found no improvement in motion discrimination in both experiments. These results are surprising since perceptual learning has been demonstrated for visual, auditory, and somatosensory discrimination. Improvements in the same task were found when visual input was provided (Experiment 3). The multisensory nature of vestibular information is discussed as a possible explanation of the absence of perceptual learning in darkness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, reconstruction of three-dimensional (3D) patient-specific models of a hip joint from two-dimensional (2D) calibrated X-ray images is addressed. Existing 2D-3D reconstruction techniques usually reconstruct a patient-specific model of a single anatomical structure without considering the relationship to its neighboring structures. Thus, when those techniques would be applied to reconstruction of patient-specific models of a hip joint, the reconstructed models may penetrate each other due to narrowness of the hip joint space and hence do not represent a true hip joint of the patient. To address this problem we propose a novel 2D-3D reconstruction framework using an articulated statistical shape model (aSSM). Different from previous work on constructing an aSSM, where the joint posture is modeled as articulation in a training set via statistical analysis, here it is modeled as a parametrized rotation of the femur around the joint center. The exact rotation of the hip joint as well as the patient-specific models of the joint structures, i.e., the proximal femur and the pelvis, are then estimated by optimally fitting the aSSM to a limited number of calibrated X-ray images. Taking models segmented from CT data as the ground truth, we conducted validation experiments on both plastic and cadaveric bones. Qualitatively, the experimental results demonstrated that the proposed 2D-3D reconstruction framework preserved the hip joint structure and no model penetration was found. Quantitatively, average reconstruction errors of 1.9 mm and 1.1 mm were found for the pelvis and the proximal femur, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An axisymmetric, elastic pipe is filled with an incompressible fluid and is immersed in a second, coaxial rigid pipe which contains the same fluid. A pressure pulse in the outer fluid annulus deforms the elastic pipe which invokes a fluid motion in the fluid core. It is the aim of this study to investigate streaming phenomena in the core which may originate from such a fluid-structure interaction. This work presents a numerical solver for such a configuration. It was developed in the OpenFOAM software environment and is based on the Arbitrary Lagrangian Eulerian (ALE) approach for moving meshes. The solver features a monolithic integration of the one-dimensional, coupled system between the elastic structure and the outer fluid annulus into a dynamic boundary condition for the moving surface of the fluid core. Results indicate that our configuration may serve as a mechanical model of the Tullio Phenomenon (sound-induced vertigo).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Culture Fair Test (CFT) is a psychometric test of fluid intelligence consisting of four subtests; Series, Classification, Matrices, and Topographies. The four subtests are only moderately intercorrelated, doubting the notion that they assess the same construct (i.e., fluid intelligence). As an explanation of these low correlations, we investigated the position effect. This effect is assumed to reflect implicit learning during testing. By applying fixed-links modeling to analyze the CFT data of 206 participants, we identified position effects as latent variables in the subtests; Classification, Matrices, and Topographies. These position effects were disentangled from a second set of latent variables representing fluid intelligence inherent in the four subtests. After this separation of position effect and basic fluid intelligence, the latent variables representing basic fluid intelligence in the subtests Series, Matrices, and Topographies could be combined to one common latent variable which was highly correlated with fluid intelligence derived from the subtest Classification (r=.72). Correlations between the three latent variables representing the position effects in the Classification, Matrices, and Topographies subtests ranged from r=.38 to r=.59. The results indicate that all four CFT subtests measure the same construct (i.e., fluid intelligence) but that the position effect confounds the factorial structure