5 resultados para aqueous salt solutions

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Intravenous fluids are commonly prescribed in childhood. 0.9 % saline is the most-used fluid in pediatrics as resuscitation or maintenance solution. Experimental studies and observations in adults suggest that 0.9 % saline is a poor candidate for fluid resuscitation. Although anesthesiologists, intensive care specialists, perioperative physicians and nephrologists have been the most active in this debate, this issue deserves some physiopathological considerations also among pediatricians. RESULTS As compared with so-called "balanced" salt crystalloids such as lactated Ringer, administration of large volumes of 0.9 % saline has been associated with following deleterious effects: tendency to hyperchloremic metabolic acidosis (called dilution acidosis); acute kidney injury with reduced urine output and salt retention; damaged vascular permeability and stiffness, increase in proinflammatory mediators; detrimental effect on coagulation with tendency to blood loss; detrimental gastrointestinal perfusion and function; possible uneasiness at the bedside resulting in unnecessary administration of more fluids. Nevertheless, there is no firm evidence that these adverse effects are clinically relevant. CONCLUSIONS Intravenous fluid therapy is a medicine like insulin, chemotherapy or antibiotics. Prescribing fluids should fit the child's history and condition, consider the right dose at the right rate as well as the electrolyte levels and other laboratory variables. It is unlikely that a single type of fluid will be suitable for all pediatric patients. "Balanced" salt crystalloids, although more expensive, should be preferred for volume resuscitation, maintenance and perioperatively. Lactated Ringer appears unsuitable for patients at risk for brain edema and for those with overt or latent chloride-deficiency. Finally, in pediatrics there is a need for new fluids to be developed on the basis of a better understanding of the physiology and to be tested in well-designed trials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fluorides are used in dental care due to their beneficial effect in tooth enamel de-/remineralization cycles. To achieve a desired constant supply of soluble fluorides in the oral cavity, different approaches have been followed. Here we present results on the preparation of CaF2 particles and their characterization with respect to a potential application as enamel associated fluoride releasing reservoirs. CaF2 particles were synthesized by precipitation from soluble NaF and CaCl2 salt solutions of defined concentrations and their morphology analyzed by scanning electron microscopy. CaF2 particles with defined sizes and shapes could be synthesized by adjusting the concentrations of the precursor salt solutions. Such particles interacted with enamel surfaces when applied at fluoride concentrations correlating to typical dental care products. Fluoride release from the synthesized CaF2 particles was observed to be largely influenced by the concentration of phosphate in the solution. Physiological solutions with phosphate concentration similar to saliva (3.5 mM) reduced the fluoride release from pure CaF2 particles by a factor of 10-20 × as compared to phosphate free buffer solutions. Fluoride release was even lower in human saliva. The fluoride release could be increased by the addition of phosphate in substoichiometric amounts during CaF2 particle synthesis. The presented results demonstrate that the morphology and fluoride release characteristics of CaF2 particles can be tuned and provide evidence of the suitability of synthetic CaF2 particles as enamel associated fluoride reservoirs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The liquid–vapor interface is difficult to access experimentally but is of interest from a theoretical and applied point of view and has particular importance in atmospheric aerosol chemistry. Here we examine the liquid–vapor interface for mixtures of water, sodium chloride, and formic acid, an abundant chemical in the atmosphere. We compare the results of surface tension and X-ray photoelectron spectroscopy (XPS) measurements over a wide range of formic acid concentrations. Surface tension measurements provide a macroscopic characterization of solutions ranging from 0 to 3 M sodium chloride and from 0 to over 0.5 mole fraction formic acid. Sodium chloride was found to be a weak salting out agent for formic acid with surface excess depending only slightly on salt concentration. In situ XPS provides a complementary molecular level description about the liquid–vapor interface. XPS measurements over an experimental probe depth of 51 Å gave the C 1s to O 1s ratio for both total oxygen and oxygen from water. XPS also provides detailed electronic structure information that is inaccessible by surface tension. Density functional theory calculations were performed to understand the observed shift in C 1s binding energies to lower values with increasing formic acid concentration. Part of the experimental −0.2 eV shift can be assigned to the solution composition changing from predominantly monomers of formic acid to a combination of monomers and dimers; however, the lack of an appropriate reference to calibrate the absolute BE scale at high formic acid mole fraction complicates the interpretation. Our data are consistent with surface tension measurements yielding a significantly more surface sensitive measurement than XPS due to the relatively weak propensity of formic acid for the interface. A simple model allowed us to replicate the XPS results under the assumption that the surface excess was contained in the top four angstroms of solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrolysis and the reactivity of two dinuclear p-cymene ruthenium monothiolato complexes, [(η6-p-MeC6H4Pri)2Ru2Cl2(µ-Cl)(µ-S-m-9-B10C2H11)] (1) and [(η6-p-MeC6H4Pri)2¬Ru2Cl2(µ-Cl)¬(µ-S¬CH2-p-C6H4-NO2)] (2), and of two dinuclear p-cymene ruthenium dithiolato complexes, [(η6-p-MeC6H4Pri)2Ru2(µ-SCH2CH2Ph)2Cl2] (3) and [(η6-p-Me¬C6H4¬Pri)2¬Ru2(S¬CH2¬C6H4-p-O¬Me)2¬Cl2] (4) towards amino acids, nucleotides, and a single-stranded DNA dodecamer were studied using NMR and mass spectrometry. In aqueous solutions at 37 °C, the monothiolato com¬plexes 1 and 2 undergo rapid hydrolysis, irrespective of the pH value, the predominant species in D2O/acetone-d6 solution at equilibrium being the neutral hydroxo complexes [(η6-p-Me¬C6H4¬Pri)2Ru2(OD)2(µ-OD)(µ-SR)]. The dithiolato complexes 3 and 4 are stable in water under acidic conditions, but undergo slow hydrolysis under neutral and basic conditions. In both cases, the cationic hydroxo complexes [(η6-p-MeC6H4Pri)2Ru2(µ-SR)2¬(OD)¬(CD3CN)]+ are the only spe¬cies observed in D2O/CD3CN at equilibrium. Surprisingly, no adducts are observed upon addition of an excess of L-methionine or L-histidine to the aqueous solutions of the complexes. Upon addition of an excess of L-cysteine, on the other hand, 1 and 2 form the unusual cationic trithiolato complexes [(η6-p-MeC6H4Pri)2¬Ru2{µ-SCH2CH(NH2)COOH}2(µ-SR)]+ containing two bridging cysteinato li¬gands, while 3 and 4 yield cationic trithiolato complexes [(η6-p-MeC6H4Pri)2Ru2[µ-SCH2CH¬(NH2)COOH](µ-SR)2]+ containing one bridging cysteinato ligand. A representative of catio¬nic trithiolato complexes containing a cysteinato bridge of this type, [(η6-p-MeC6H4Pri)2¬Ru2[µ-S¬CH2CH(NH2)COOH](µ-SCH2-p-C6H4-But)2]+ (6) could be synthesised from the di¬thiolato complex [(η6-p-Me¬C6H4¬Pri)2-Ru2(S¬CH2¬C6H4-p-But)2Cl2] (5), isolated as the tetra¬fluo¬ro¬borate salt and fully characterised. Moreover, the mono- and dithiolato complexes 1 - 4 are inert toward nucleotides and DNA, suggesting that DNA is not a target of cytotoxic thiolato-bridged arene ruthenium complexes. In contrast to the trithiolato complexes, monothiolato and dithio¬lato complexes hydrolyse and react with L-cysteine. These results may have im¬portant implications for the mode of action of thiolato-bridged dinuclear arene ruthenium drug candidates, and suggest that their modes of action are different to those of other arene ruthenium complexes.