21 resultados para approximate entropy

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximate entropy (ApEn) of blood pressure (BP) can be easily measured based on software analysing 24-h ambulatory BP monitoring (ABPM), but the clinical value of this measure is unknown. In a prospective study we investigated whether ApEn of BP predicts, in addition to average and variability of BP, the risk of hypertensive crisis. In 57 patients with known hypertension we measured ApEn, average and variability of systolic and diastolic BP based on 24-h ABPM. Eight of these fifty-seven patients developed hypertensive crisis during follow-up (mean follow-up duration 726 days). In bivariate regression analysis, ApEn of systolic BP (P<0.01), average of systolic BP (P=0.02) and average of diastolic BP (P=0.03) were significant predictors of hypertensive crisis. The incidence rate ratio of hypertensive crisis was 14.0 (95% confidence interval (CI) 1.8, 631.5; P<0.01) for high ApEn of systolic BP as compared to low values. In multivariable regression analysis, ApEn of systolic (P=0.01) and average of diastolic BP (P<0.01) were independent predictors of hypertensive crisis. A combination of these two measures had a positive predictive value of 75%, and a negative predictive value of 91%, respectively. ApEn, combined with other measures of 24-h ABPM, is a potentially powerful predictor of hypertensive crisis. If confirmed in independent samples, these findings have major clinical implications since measures predicting the risk of hypertensive crisis define patients requiring intensive follow-up and intensified therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. Results Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. Conclusion ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Sedative and analgesic drugs are frequently used in critically ill patients. Their overuse may prolong mechanical ventilation and length of stay in the intensive care unit. Guidelines recommend use of sedation protocols that include sedation scores and trials of sedation cessation to minimize drug use. We evaluated processed electroencephalography (response and state entropy and bispectral index) as an adjunct to monitoring effects of commonly used sedative and analgesic drugs and intratracheal suctioning. METHODS: Electrodes for monitoring bispectral index and entropy were placed on the foreheads of 44 critically ill patients requiring mechanical ventilation and who previously had no brain dysfunction. Sedation was targeted individually using the Ramsay Sedation Scale, recorded every 2 hours or more frequently. Use of and indications for sedative and analgesic drugs and intratracheal suctioning were recorded manually and using a camera. At the end of the study, processed electroencephalographical and haemodynamic variables collected before and after each drug application and tracheal suctioning were analyzed. Ramsay score was used for comparison with processed electroencephalography when assessed within 15 minutes of an intervention. RESULTS: The indications for boli of sedative drugs exhibited statistically significant, albeit clinically irrelevant, differences in terms of their association with processed electroencephalographical parameters. Electroencephalographical variables decreased significantly after bolus, but a specific pattern in electroencephalographical variables before drug administration was not identified. The same was true for opiate administration. At both 30 minutes and 2 minutes before intratracheal suctioning, there was no difference in electroencephalographical or clinical signs in patients who had or had not received drugs 10 minutes before suctioning. Among patients who received drugs, electroencephalographical parameters returned to baseline more rapidly. In those cases in which Ramsay score was assessed before the event, processed electroencephalography exhibited high variation. CONCLUSIONS: Unpleasant or painful stimuli and sedative and analgesic drugs are associated with significant changes in processed electroencephalographical parameters. However, clinical indications for drug administration were not reflected by these electroencephalographical parameters, and barely by sedation level before drug administration or tracheal suction. This precludes incorporation of entropy and bispectral index as target variables for sedation and analgesia protocols in critically ill patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Sedation protocols, including the use of sedation scales and regular sedation stops, help to reduce the length of mechanical ventilation and intensive care unit stay. Because clinical assessment of depth of sedation is labor-intensive, performed only intermittently, and interferes with sedation and sleep, processed electrophysiological signals from the brain have gained interest as surrogates. We hypothesized that auditory event-related potentials (ERPs), Bispectral Index (BIS), and Entropy can discriminate among clinically relevant sedation levels. METHODS: We studied 10 patients after elective thoracic or abdominal surgery with general anesthesia. Electroencephalogram, BIS, state entropy (SE), response entropy (RE), and ERPs were recorded immediately after surgery in the intensive care unit at Richmond Agitation-Sedation Scale (RASS) scores of -5 (very deep sedation), -4 (deep sedation), -3 to -1 (moderate sedation), and 0 (awake) during decreasing target-controlled sedation with propofol and remifentanil. Reference measurements for baseline levels were performed before or several days after the operation. RESULTS: At baseline, RASS -5, RASS -4, RASS -3 to -1, and RASS 0, BIS was 94 [4] (median, IQR), 47 [15], 68 [9], 75 [10], and 88 [6]; SE was 87 [3], 46 [10], 60 [22], 74 [21], and 87 [5]; and RE was 97 [4], 48 [9], 71 [25], 81 [18], and 96 [3], respectively (all P < 0.05, Friedman Test). Both BIS and Entropy had high variabilities. When ERP N100 amplitudes were considered alone, ERPs did not differ significantly among sedation levels. Nevertheless, discriminant ERP analysis including two parameters of principal component analysis revealed a prediction probability PK value of 0.89 for differentiating deep sedation, moderate sedation, and awake state. The corresponding PK for RE, SE, and BIS was 0.88, 0.89, and 0.85, respectively. CONCLUSIONS: Neither ERPs nor BIS or Entropy can replace clinical sedation assessment with standard scoring systems. Discrimination among very deep, deep to moderate, and no sedation after general anesthesia can be provided by ERPs and processed electroencephalograms, with similar P(K)s. The high inter- and intraindividual variability of Entropy and BIS precludes defining a target range of values to predict the sedation level in critically ill patients using these parameters. The variability of ERPs is unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: We studied intra-individual and inter-individual variability of two online sedation monitors, BIS and Entropy, in volunteers under sedation. METHODS: Ten healthy volunteers were sedated in a stepwise manner with doses of either midazolam and remifentanil or dexmedetomidine and remifentanil. One week later the procedure was repeated with the remaining drug combination. The doses were adjusted to achieve three different sedation levels (Ramsay Scores 2, 3 and 4) and controlled by a computer-driven drug-delivery system to maintain stable plasma concentrations of the drugs. At each level of sedation, BIS and Entropy (response entropy and state entropy) values were recorded for 20 minutes. Baseline recordings were obtained before the sedative medications were administered. RESULTS: Both inter-individual and intra-individual variability increased as the sedation level deepened. Entropy values showed greater variability than BIS(R) values, and the variability was greater during dexmedetomidine/remifentanil sedation than during midazolam/remifentanil sedation. CONCLUSIONS: The large intra-individual and inter-individual variability of BIS and Entropy values in sedated volunteers makes the determination of sedation levels by processed electroencephalogram (EEG) variables impossible. Reports in the literature which draw conclusions based on processed EEG variables obtained from sedated intensive care unit (ICU) patients may be inaccurate due to this variability. TRIAL REGISTRATION: clinicaltrials.gov Nr. NCT00641563.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.

Relevância:

20.00% 20.00%

Publicador: