16 resultados para applicant pool
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The SWISSspine registry is the first mandatory registry of its kind in the history of Swiss orthopaedics and it follows the principle of "coverage with evidence development". Its goal is the generation of evidence for a decision by the Swiss federal office of health about reimbursement of the concerned technologies and treatments by the basic health insurance of Switzerland. Recently, developed and clinically implemented, the Dynardi total disc arthroplasty (TDA) accounted for 10% of the implanted lumbar TDAs in the registry. We compared the outcomes of patients treated with Dynardi to those of the recipients of the other TDAs in the registry. Between March 2005 and October 2009, 483 patients with single-level TDA were documented in the registry. The 52 patients with a single Dynardi lumbar disc prosthesis implanted by two surgeons (CE and OS) were compared to the 431 patients who received one of the other prostheses. Data were collected in a prospective, observational multicenter mode. Surgery, implant, 3-month, 1-year, and 2-year follow-up forms as well as comorbidity, NASS and EQ-5D questionnaires were collected. For statistical analyses, the Wilcoxon signed-rank test and chi-square test were used. Multivariate regression analyses were also performed. Significant and clinically relevant reduction of low back pain and leg pain as well as improvement in quality of life was seen in both groups (P < 0.001 postop vs. preop). There were no inter-group differences regarding postoperative pain levels, intraoperative and follow-up complications or revision procedures with a new hospitalization. However, significantly more Dynardi patients achieved a minimum clinically relevant low back pain alleviation of 18 VAS points and a quality of life improvement of 0.25 EQ-5D points. The patients with Dynardi prosthesis showed a similar outcome to patients receiving the other TDAs in terms of postoperative low back and leg pain, complications, and revision procedures. A higher likelihood for achieving a minimum clinically relevant improvement of low back pain and quality of life in Dynardi patients was observed. This difference might be due to the large number of surgeons using other TDAs compared to only two surgeons using the Dynardi TDA, with corresponding variations in patient selection, patient-physician interaction and other factors, which cannot be assessed in a registry study.
Resumo:
Releasing captive-bred fish into natural environments (stocking) is common in fisheries worldwide. Although stocking is believed to have a positive effect on fish abundance over the short term, little is known about the long-term consequences of recurrent stocking and its influence on natural populations. In fact, there are growing concerns that genetically maladapted captive-bred fish can eventually reduce the abundance of natural population. In this study, we develop a simple model to quantitatively investigate the condition under which recurrent stocking has long-term effects on the natural population. Using a population dynamics model that takes into account a density-dependent recruitment, a gene responsible for the fitness difference between wild and captive-bred fish, and hybridization between them, we show that there is little or no contribution of recurrent stocking to the stock enhancement without a replacement of the wild gene pool by the captive-bred gene pool. The model further predicted that stocking of an intermediate level causes a reduction, rather than enhancement, of population size over the long term. The population decline due to stocking was attributed to the fitness disadvantage of captive-bred fish and strong overcompensation at recruitment stage. These results suggest that it would be difficult to simultaneously attain population size recovery and conservation of the local gene pool when captive-bred fish have fitness disadvantage in the wild, although caution is needed when applying the predictions from the simplified model to a specific species or population.
Resumo:
The cardiac sodium current (INa) is responsible for the rapid depolarization of cardiac cells, thus allowing for their contraction. It is also involved in regulating the duration of the cardiac action potential (AP) and propagation of the impulse throughout the myocardium. Cardiac INa is generated by the voltage-gated Na(+) channel, NaV1.5, a 2016-residue protein which forms the pore of the channel. Over the past years, hundreds of mutations in SCN5A, the human gene coding for NaV1.5, have been linked to many cardiac electrical disorders, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. Similar to many membrane proteins, NaV1.5 has been found to be regulated by several interacting proteins. In some cases, these different proteins, which reside in distinct membrane compartments (i.e. lateral membrane vs. intercalated disks), have been shown to interact with the same regulatory domain of NaV1.5, thus suggesting that several pools of NaV1.5 channels may co-exist in cardiac cells. The aim of this review article is to summarize the recent works that demonstrate its interaction with regulatory proteins and illustrate the model that the sodium channel NaV1.5 resides in distinct and different pools in cardiac cells. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Potentially human pathogenic Acanthamoeba isolated from a heated indoor swimming pool in Switzerland
Resumo:
Some free-living amoebae, including some species of the genus Acanthamoeba, can cause infections in humans and animals. These organisms are known to cause granulomatous amebic encephalitis (GAE) in predominantly immune-deficient persons. In the present study, we isolated a potentially human pathogenic Acanthamoeba isolate originating from a public heated indoor swimming pool in Switzerland. The amoebae, thermophilically preselected by culture at 37 degrees C, subsequently displayed a high thermotolerance, being able to grow at 42 degrees C, and a marked cytotoxicity, based on a co-culture system using the murine cell line L929. Intranasal infection of Rag2-immunodeficient mice resulted in the death of all animals within 24 days. Histopathology of brains and lungs revealed marked tissue necrosis and hemorrhagic lesions going along with massive proliferation of amoebae. PCR and sequence analysis, based on 18S rDNA, identified the agent as Acanthamoeba lenticulata. In summary, the present study reports on an Acanthamoeba isolate from a heated swimming pool suggestive of being potentially pathogenic to immunocompromised persons.
Resumo:
Meniscal injuries can occur secondary to trauma or be instigated by the changes in knee-joint function that are associated with aging, osteo- and rheumatoid arthritis, disturbances in gait and obesity. Sixty per cent of persons over 50 years of age manifest signs of meniscal pathology. The surgical and arthroscopic measures that are currently implemented to treat meniscal deficiencies bring only transient relief from pain and effect but a temporary improvement in joint function. Although tissue-engineering-based approaches to meniscal repair are now being pursued, an appropriate in-vitro model has not been conceived. The aim of this study was to develop an organ-slice culturing system to simulate the repair of human meniscal lesions in vitro. The model consists of a ring of bovine meniscus enclosing a chamber that represents the defect and reproduces its sequestered physiological microenvironment. The defect, which is closed with a porous membrane, is filled with fragments of synovial tissue, as a source of meniscoprogenitor cells, and a fibrin-embedded, calcium-phosphate-entrapped depot of the meniscogenic agents BMP-2 and TGF-ß1. After culturing for 2 to 6 weeks, the constructs were evaluated histochemically and histomorphometrically, as well as immunohistochemically for the apoptotic marker caspase 3 and collagen types I and II. Under the defined conditions, the fragments of synovium underwent differentiation into meniscal tissue, which bonded with the parent meniscal wall. Both the parent and the neoformed meniscal tissue survived the duration of the culturing period without significant cell losses. The concept on which the in-vitro system is based was thus validated. This article is protected by copyright. All rights reserved.