33 resultados para antibody mediated rejection
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The problem of AMR remains unsolved because standardized schemes for diagnosis and treatment remains contentious. Therefore, a consensus conference was organized to discuss the current status of antibody-mediated rejection (AMR) in heart transplantation.
Resumo:
Antibody-mediated rejection (AMR) plays a significant role in cardiac allograft dysfunction, and recently a consensus regarding the diagnosis of AMR has been published. To our knowledge, it has not previously been reported that acute graft failure related to AMR, and antiendothelial cell antibodies can successfully be diagnosed to allow the patient to receive the outlined treatment and undergo a subsequent retransplantation.
Resumo:
Intravenous immunoglobulin (IVIG) is the first line treatment for Guillain–Barré syndrome and multifocal motor neuropathy, which are caused by anti-ganglioside antibody-mediated complement-dependent cytotoxicity. IVIG has many potential mechanisms of action, and sialylation of the IgG Fc portion reportedly has an anti-inflammatory effect in antibody-dependent cell-mediated cytotoxicity models. We investigated the effects of different IVIG glycoforms on the inhibition of antibody-mediated complement-dependent cytotoxicity. Deglycosylated, degalactosylated, galactosylated and sialylated IgG were prepared from IVIG following treatment with glycosidases and glycosyltransferases. Sera from patients with Guillain–Barré syndrome, Miller Fisher syndrome and multifocal motor neuropathy associated with anti-ganglioside antibodies were used. Inhibition of complement deposition subsequent to IgG or IgM autoantibody binding to ganglioside, GM1 or GQ1b was assessed on microtiter plates. Sialylated and galactosylated IVIGs more effectively inhibited C3 deposition than original IVIG or enzyme-treated IVIGs (agalactosylated and deglycosylated IVIGs). Therefore, sialylated and galactosylated IVIGs may be more effective than conventional IVIG in the treatment of complement-dependent autoimmune diseases.
Resumo:
Anti-human leukocyte antigen class I (HLA I) antibodies were shown to activate several protein kinases in endothelial cells (ECs), which induces proliferation and cell survival. An important phenomenon in antibody-mediated rejection is the occurrence of interstitial edema. We investigated the effect of anti-HLA I antibodies on endothelial proliferation and permeability, as one possible underlying mechanism of edema formation. HLA I antibodies increased the permeability of cultured ECs isolated from umbilical veins. Anti-HLA I antibodies induced the production of vascular endothelial growth factor (VEGF) by ECs, which activated VEGF receptor 2 (VEGFR2) in an autocrine manner. Activated VEGFR2 led to a c-Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and its degradation. Aberrant VE-cadherin expression resulted in impaired adherens junctions, which might lead to increased endothelial permeability. This effect was only observed after cross-linking of HLA I molecules by intact antibodies. Furthermore, our results suggest that increased endothelial proliferation following anti-HLA I treatment occurs via autocrine VEGFR2 activation. Our data indicate the ability of anti-HLA I to induce VEGF production in ECs. Transactivation of VEGFR2 leads to increased EC proliferation and paracellular permeability. The autocrine effect of VEGF on endothelial permeability might be an explanation for the formation of interstitial edema after transplantation.
Resumo:
Renal transplantation has become an established option for renal replacement therapy in many patients with end stage renal disease. Living donation is a possibility for timely transplantation, hampered in 20 % of all possible donors and recipients byincompatible blood groups. AB0-incompatible renal transplantation overcomes this hurdle with acceptable allograft survival compared to conventional living-donor renal transplantation. During the last 10 years, the number of patients awaiting renal transplantation older than 65 years has nearly doubled. The decision to transplant those patients and their medical treatment is a growing challenge in transplantation. On the other hand donor age is increasing with potential negative consequences for long-term outcome of organ function. Antibody-mediated humoral rejection have been identified lately as an important cause for allograft failure during long-term follow up of renal transplant patients. New immunological methods to detect donor-specific antibodies, like solid-phase assays (Luminex®), have increased the knowledge and understanding of humoral rejection processes. This will lead hopefully to modified immunosuppressive strategies to minimize organ failure due to chronic rejection.
Resumo:
Clinical immunity to Plasmodium falciparum malaria develops after repeated exposure to the parasite. At least 2 P. falciparum variant antigens encoded by multicopy gene families (var and rif) are targets of this adaptive antibody-mediated immunity. A third multigene family of variant antigens comprises the stevor genes. Here, 4 different stevor sequences were selected for cloning and expression in Escherichia coli and His6-tagged fusion proteins were used for assessing the development of immunity. In a cross-sectional analysis of clinically immune adults living in a malaria endemic area in Ghana, high levels of anti-STEVOR IgG antibody titres were determined in ELISA. A cross-sectional study of 90 nine-month-old Ghanaian infants using 1 recombinant STEVOR showed that the antibody responses correlated positively with the number of parasitaemia episodes. In a longitudinal investigation of 17 immunologically naïve 9-month-old infants, 3 different patterns of anti-STEVOR antibody responses could be distinguished (high, transient and low). Children with high anti-STEVOR-antibody levels exhibited an elevated risk for developing parasitaemia episodes. Overall, a protective effect could not be attributed to antibodies against the STEVOR proteins chosen for the study presented here.
Resumo:
Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.
Resumo:
OBJECTIVES: Human interleukin 10 (hIL-10) may reduce acute rejection after organ transplantation. Our previous data shows that electroporation-mediated transfer of plasmid DNA to peripheral muscle enhances gene transduction dramatically. This study was designed to investigate the effect of electroporation-mediated overexpression of hIL-10 on acute rejection of cardiac allografts in the rat. METHODS: The study was designed to evaluate the effect of hIL-10 gene transfer on (a) early rejection pattern and (b) graft survival. Gene transfer was achieved by intramuscular (i.m.) injection into the tibialis anterior muscle of Fischer (F344) male recipients followed by electroporation 24 h prior to transplantation. Heterotopic cardiac transplantation was performed from male Brown Norway rat to F344. Four groups were studied (n = 6). Treated animals in groups B1 and B2 received 2.5 microg of pCIK hIL-10 and control animals in groups A1 and A2 distilled water. Graft function was assessed by daily palpation. Animals from group A1 were sacrificed at the cessation of the heart beat of the graft and those in group B1 were sacrificed at day 7; blood was taken for ELISA measurement of hIL-10 and tissue for myeloperoxidase (MPO) measurement and histological assessment. To evaluate graft survival, groups A2 and B2 were sacrificed at cessation of the heart beat of the graft. RESULTS: Histological examination revealed severe rejection (IIIB-IV) in group A1 in contrast to low to moderate rejection (IA-IIIA) in group B1 (p = 0.02). MPO activity was significantly lower in group B1 compared to group A1 (18 +/- 7 vs. 32 +/- 14 mU/mg protein, p = 0.05). Serum hIL-10 levels were 46 +/- 13 pg/ml in group B1 vs. 0 pg/ml in group A1. At day 7 all heart allografts in the treated groups B1 and B2 were beating, whereas they stopped beating at 5 +/- 2 days in groups A1 and A2 vs. 14 +/- 2 days in group B2 (p = 0.0012). CONCLUSIONS: Electroporation-mediated intramuscular overexpression of hIL-10 reduces acute rejection and improves survival of heterotopic heart allografts in rats. This study demonstrates that peripheral overexpression of specific genes in skeletal muscle may reduce acute rejection after whole organ transplantation.
Resumo:
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) and agonistic anti-DR4/TRAIL-R1 and anti-DR5/TRAIL-R2 antibodies are currently under clinical investigation for treatment of different malignancies. TRAIL activates DR4 and DR5 and thereby triggers apoptotic and non-apoptotic signaling pathways, but possible different roles of DR4 or DR5 in these responses has poorly been addressed so far. In the present work, we analyzed cell viability, DISC formation as well as IL-8 and NF-kappaB activation side by side in responses to TRAIL and agonistic antibodies against DR4 (mapatumumab) and against DR5 (lexatumumab) in pancreatic ductal adenocarcinoma cells. We found that all three reagents are able to activate cell death and pro-inflammatory signaling. Death-inducing signaling complex (DISC) analysis revealed that mapatumumab and lexatumumab induce formation of homocomplexes of either DR4 or DR5, whereas TRAIL additionally stimulated the formation of heterocomplexes of both receptors. Notably, blocking of receptors using DR4- and DR5-specific Fab fragments indicated that TRAIL exerted its function predominantly via DR4. Interestingly, inhibition of PKC by Goe6983 enabled DR5 to trigger apoptotic signaling in response to TRAIL and also strongly enhanced lexatumumab-mediated cell death. Our results suggest the existence of mechanisms that silence DR5 for TRAIL- but not for agonistic-antibody treatment.
Resumo:
Pseudomonas aeruginosa infection in ventilator-associated pneumonia is a serious and often life-threatening complication in intensive care unit patients, and new treatment options are needed. We used B-cell-enriched peripheral blood lymphocytes from a volunteer immunized with a P. aeruginosa O-polysaccharide-toxin A conjugate vaccine to generate human hybridoma cell lines producing monoclonal antibodies specific for individual P. aeruginosa lipopolysaccharide serotypes. The fully human monoclonal antibody secreted by one of these lines, KBPA101, is an IgM/kappa antibody that binds P. aeruginosa of International Antigenic Typing System (IATS) serotype O11 with high avidity (5.81 x 10(7) M(-1) +/- 2.8 x 10(7) M(-1)) without cross-reacting with other serotypes. KBPA101 specifically opsonized the P. aeruginosa of IATS O11 serotype and mediated complement-dependent phagocytosis in vitro by the human monocyte-like cell line HL-60 at a very low concentration (half-maximal phagocytosis at 0.16 ng/ml). In vivo evaluation of KBPA101 demonstrated a dose-response relationship for protection against systemic infections in a murine burn wound sepsis model, where 70 to 100% of animals were protected against lethal challenges with P. aeruginosa at doses as low as 5 microg/animal. Furthermore, a high efficacy of KBPA101 in protection from local respiratory infections in an acute lung infection model in mice was demonstrated. Preclinical toxicology evaluation on human tissue, in rabbits, and in mice did not indicate any toxicity of KBPA101. Based on these preclinical findings, the first human clinical trials have been initiated.
Resumo:
Definition of acute renal allograft rejection (AR) markers remains clinically relevant. Features of T-cell-mediated AR are tubulointerstitial and vascular inflammation associated with excessive extracellular matrix (ECM) remodeling, regulated by metzincins, including matrix metalloproteases (MMP). Our study focused on expression of metzincins (METS), and metzincins and related genes (MARGS) in renal allograft biopsies using four independent microarray data sets. Our own cases included normal histology (N, n = 20), borderline changes (BL, n = 4), AR (n = 10) and AR + IF/TA (n = 7). MARGS enriched in all data sets were further examined on mRNA and/or protein level in additional patients. METS and MARGS differentiated AR from BL, AR + IF/TA and N in a principal component analysis. Their expression changes correlated to Banff t- and i-scores. Two AR classifiers, based on METS (including MMP7, TIMP1), or on MARGS were established in our own and validated in the three additional data sets. Thirteen MARGS were significantly enriched in AR patients of all data sets comprising MMP7, -9, TIMP1, -2, thrombospondin2 (THBS2) and fibrillin1. RT-PCR using microdissected glomeruli/tubuli confirmed MMP7, -9 and THBS2 microarray results; immunohistochemistry showed augmentation of MMP2, -9 and TIMP1 in AR. TIMP1 and THBS2 were enriched in AR patient serum. Therefore, differentially expressed METS and MARGS especially TIMP1, MMP7/-9 represent potential molecular AR markers.
Resumo:
The effect of prolonged electroporation-mediated human interleukin-10 (hIL-10) overexpression 24 hours before transplantation, combined with sequential human hepatocyte growth factor (HGF) overexpression into skeletal muscle on day 5, on rat lung allograft rejection was evaluated. Left lung allotransplantation was performed from Brown-Norway to Fischer-F344 rats. Gene transfer into skeletal muscle was enhanced by electroporation. Three groups were studied: group I animals (n = 5) received 2.5 μg pCIK-hIL-10 (hIL-10/CMV [cytomegalovirus] early promoter enhancer) on day -1 and 80 μg pCIK-HGF (HGF/CMV early promoter enhancer) on day 5. Group II animals (n = 4) received 2.5 μg pCIK-hIL-10 and pUbC-hIL-10 (hIL-10/pUbC promoter) on day -1. Control group III animals (n = 4) were treated by sham electroporation on days -1 and 5. All animals received daily nontherapeutic intraperitoneal dose of cyclosporin A (2.5 mg/kg) and were sacrificed on day 15. Graft oxygenation and allograft rejection were evaluated. Significant differences were found between study groups in graft oxygenation (Pao(2)) (P = .0028; group I vs. groups II and III, P < .01 each). Pao(2) was low in group II (31 ± 1 mm Hg) and in group III controls (34 ± 10 mm Hg), without statistically significant difference between these 2 groups (P = .54). In contrast, in group I, Pao(2) of recipients sequentially transduced with IL-10 and HGF plasmids was much improved, with 112 ± 39 mm Hg (vs. groups II and III; P < .01 each), paralleled by reduced vascular and bronchial rejection (group I vs. groups II and III, P < .021 each). Sequential overexpression of anti-inflammatory cytokine IL-10, followed by sequential and overlapping HGF overexpression on day 5, preserves lung function and reduces acute lung allograft rejection up to day 15 post transplant as compared to prolonged IL-10 overexpression alone.
Resumo:
The Nef protein of HIV-1 is important for AIDS pathogenesis, but it is not targeted by current antiviral strategies. Here, we describe a single-domain antibody (sdAb) that binds to HIV-1 Nef with a high affinity (K(d) = 2 × 10(-9)M) and inhibited critical biologic activities of Nef both in vitro and in vivo. First, it interfered with the CD4 down-regulation activity of a broad panel of nef alleles through inhibition of the Nef effects on CD4 internalization from the cell surface. Second, it was able to interfere with the association of Nef with the cellular p21-activated kinase 2 as well as with the resulting inhibitory effect of Nef on actin remodeling. Third, it counteracted the Nef-dependent enhancement of virion infectivity and inhibited the positive effect of Nef on virus replication in peripheral blood mononuclear cells. Fourth, anti-Nef sdAb rescued Nef-mediated thymic CD4(+) T-cell maturation defects and peripheral CD4(+) T-cell activation in the CD4C/HIV-1(Nef) transgenic mouse model. Because all these Nef functions have been implicated in Nef effects on pathogenesis, this anti-Nef sdAb may represent an efficient tool to elucidate the molecular functions of Nef in the virus life cycle and could now help to develop new strategies for the control of AIDS.