5 resultados para analysis of X-ray energy spectroscopy

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The liquid–vapor interface is difficult to access experimentally but is of interest from a theoretical and applied point of view and has particular importance in atmospheric aerosol chemistry. Here we examine the liquid–vapor interface for mixtures of water, sodium chloride, and formic acid, an abundant chemical in the atmosphere. We compare the results of surface tension and X-ray photoelectron spectroscopy (XPS) measurements over a wide range of formic acid concentrations. Surface tension measurements provide a macroscopic characterization of solutions ranging from 0 to 3 M sodium chloride and from 0 to over 0.5 mole fraction formic acid. Sodium chloride was found to be a weak salting out agent for formic acid with surface excess depending only slightly on salt concentration. In situ XPS provides a complementary molecular level description about the liquid–vapor interface. XPS measurements over an experimental probe depth of 51 Å gave the C 1s to O 1s ratio for both total oxygen and oxygen from water. XPS also provides detailed electronic structure information that is inaccessible by surface tension. Density functional theory calculations were performed to understand the observed shift in C 1s binding energies to lower values with increasing formic acid concentration. Part of the experimental −0.2 eV shift can be assigned to the solution composition changing from predominantly monomers of formic acid to a combination of monomers and dimers; however, the lack of an appropriate reference to calibrate the absolute BE scale at high formic acid mole fraction complicates the interpretation. Our data are consistent with surface tension measurements yielding a significantly more surface sensitive measurement than XPS due to the relatively weak propensity of formic acid for the interface. A simple model allowed us to replicate the XPS results under the assumption that the surface excess was contained in the top four angstroms of solution.