2 resultados para aminoacids
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Repetitive proteins (RP) of Trypanosoma cruzi are highly present in the parasite and are strongly recognized by sera from Chagas' disease patients. Flagelar Repetitive Antigen (FRA), which is expressed in all steps of the parasite life cycle, is the RP that displays the greatest number of aminoacids per repeat and has been indicated as one of the most suitable candidate for diagnostic test because of its high performance in immunoassays. Here we analyzed the influence of the number of repeats on the immunogenic and antigenic properties of the antigen. Recombinant proteins containing one, two, and four tandem repeats of FRA (FRA1, FRA2, and FRA4, respectively) were obtained and the immune response induced by an equal amount of repeats was evaluated in a mouse model. The reactivity of specific antibodies present in sera from patients naturally infected with T. cruzi was also assessed against FRA1, FRA2, and FRA4 proteins, and the relative avidity was analyzed. We determined that the number of repeats did not increase the humoral response against the antigen and this result was reproduced when the repeated motifs were alone or fused to a non-repetitive protein. By contrast, the binding affinity of specific human antibodies increases with the number of repeated motifs in FRA antigen. We then concluded that the high ability of FRA to be recognized by specific antibodies from infected individuals is mainly due to a favorable polyvalent interaction between the antigen and the antibodies. In accordance with experimental results, a 3D model was proposed and B epitope in FRA1, FRA2, and FRA4 were predicted.
Resumo:
Intracerebral contusions can lead to regional ischemia caused by extensive release of excitotoxic aminoacids leading to increased cytotoxic brain edema and raised intracranial pressure. rCBF measurements might provide further information about the risk of ischemia within and around contusions. Therefore, the aim of the presented study was to compare the intra- and perilesional rCBF of hemorrhagic, non-hemorrhagic and mixed intracerebral contusions. In 44 patients, 60 stable Xenon-enhanced CT CBF-studies were performed (EtCO2 30 +/- 4 mmHg SD), initially 29 hours (39 studies) and subsequent 95 hours after injury (21 studies). All lesions were classified according to localization and lesion type using CT/MRI scans. The rCBF was calculated within and 1-cm adjacent to each lesion in CT-isodens brain. The rCBF within all contusions (n = 100) of 29 +/- 11 ml/100 g/min was significantly lower (p < 0.0001, Mann-Whitney U) compared to perilesional rCBF of 44 +/- 12 ml/100 g/min and intra/perilesional correlation was 0.4 (p < 0.0005). Hemorrhagic contusions showed an intra/perilesional rCBF of 31 +/- 11/44 +/- 13 ml/100 g/min (p < 0.005), non-hemorrhagic contusions 35 +/- 13/46 +/- 10 ml/100 g/min (p < 0.01). rCBF in mixed contusions (25 +/- 9/44 +/- 12 ml/100 g/min, p < 0.0001) was significantly lower compared to hemorrhagic and non-hemorrhagic contusions (p < 0.02). Intracontusional rCBF is significantly reduced to 29 +/- 11 ml/100 g/min but reduced below ischemic levels of 18 ml/100 g/min in only 16% of all contusions. Perilesional CBF in CT normal appearing brain closed to contusions is not critically reduced. Further differentiation of contusions demonstrates significantly lower rCBF in mixed contusions (defined by both hyper- and hypodense areas in the CT-scan) compared to hemorrhagic and non-hemorrhagic contusions. Mixed contusions may evolve from hemorrhagic contusions with secondary increased perilesional cytotoxic brain edema leading to reduced cerebral blood flow and altered brain metabolism. Therefore, the treatment of ICP might be individually modified by the measurement of intra- and pericontusional cerebral blood.