15 resultados para alkaline corrosion
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The enzyme tissue non-specific alkaline phosphatase (TNAP) belongs to the ectophosphatase family. It is present in large amounts in bone in which it plays a role in mineralization but little is known about its function in other tissues. Arguments are accumulating for its involvement in the brain, in particular in view of the neurological symptoms accompanying human TNAP deficiencies. We have previously shown, by histochemistry, alkaline phosphatase (AP) activity in monkey brain vessels and parenchyma in which AP exhibits specific patterns. Here, we clearly attribute this activity to TNAP expression rather than to other APs in primates (human and marmoset) and in rodents (rat and mouse). We have not found any brain-specific transcripts but our data demonstrate that neuronal and endothelial cells exclusively express the bone TNAP transcript in all species tested, except in mouse neurons in which liver TNAP transcripts have also been detected. Moreover, we highlight the developmental regulation of TNAP expression; this also acts during neuronal differentiation. Our study should help to characterize the regulation of the expression of this ectophosphatase in various cell types of the central nervous system.
Resumo:
BACKGROUND: We evaluated the ability of CA15-3 and alkaline phosphatase (ALP) to predict breast cancer recurrence. PATIENTS AND METHODS: Data from seven International Breast Cancer Study Group trials were combined. The primary end point was relapse-free survival (RFS) (time from randomization to first breast cancer recurrence), and analyses included 3953 patients with one or more CA15-3 and ALP measurement during their RFS period. CA15-3 was considered abnormal if >30 U/ml or >50% higher than the first value recorded; ALP was recorded as normal, abnormal, or equivocal. Cox proportional hazards models with a time-varying indicator for abnormal CA15-3 and/or ALP were utilized. RESULTS: Overall, 784 patients (20%) had a recurrence, before which 274 (35%) had one or more abnormal CA15-3 and 35 (4%) had one or more abnormal ALP. Risk of recurrence increased by 30% for patients with abnormal CA15-3 [hazard ratio (HR) = 1.30; P = 0.0005], and by 4% for those with abnormal ALP (HR = 1.04; P = 0.82). Recurrence risk was greatest for patients with either (HR = 2.40; P < 0.0001) and with both (HR = 4.69; P < 0.0001) biomarkers abnormal. ALP better predicted liver recurrence. CONCLUSIONS: CA15-3 was better able to predict breast cancer recurrence than ALP, but use of both biomarkers together provided a better early indicator of recurrence. Whether routine use of these biomarkers improves overall survival remains an open question.
Resumo:
BACKGROUND: Tenofovir (TDF) use has been associated with proximal renal tubulopathy, reduced calculated glomerular filtration rates (cGFR) and losses in bone mineral density. Bone resorption could result in a compensatory osteoblast activation indicated by an increase in serum alkaline phosphatase (sAP). A few small studies have reported a positive correlation between renal phosphate losses, increased bone turnover and sAP. METHODS: We analysed sAP dynamics in patients initiating (n = 657), reinitiating (n = 361) and discontinuing (n = 73) combined antiretroviral therapy with and without TDF and assessed correlations with clinical and epidemiological parameters. RESULTS: TDF use was associated with a significant increase of sAP from a median of 74 U/I (interquartile range 60-98) to a plateau of 99 U/I (82-123) after 6 months (P < 0.0001), with a prompt return to baseline upon TDF discontinuation. No change occurred in TDF-sparing regimes. Univariable and multivariable linear regression analyses revealed a positive correlation between sAP and TDF use (P < or = 0.003), but no correlation with baseline cGFR, TDF-related cGFR reduction, changes in serum alanine aminotransferase (sALT) or active hepatitis C. CONCLUSIONS: We document a highly significant association between TDF use and increased sAP in a large observational cohort. The lack of correlation between TDF use and sALT suggests that the increase in sAP is because of the bone isoenzyme and indicates stimulated bone turnover. This finding, together with published data on TDF-related renal phosphate losses, this finding raises concerns that TDF use could result in osteomalacia with a loss in bone mineral density at least in a subset of patients. This potentially severe long-term toxicity should be addressed in future studies.
Resumo:
BACKGROUND: Zirconia (ZrO2 ) has received interest as a dental material; however, little information is available on the impact of surface modifications on the osseointegration of zirconia implants. PURPOSE: The aim of the present study was to determine the effect of acid or alkaline etching of sandblasted ZrO2 implants on bone apposition in vivo. METHODS: Cylindrical ZrO2 implants with two circumferential grooves were placed in the maxilla of 12 miniature pigs. Biopsies were harvested after 1, 2, 4, and 8 weeks of healing. Undecalcified toluidine blue-stained ground sections were produced. The bone-to-implant contact, the bone area, and the presence of multinucleated giant cells were determined by histomorphometry. An uncorrected explorative statistical analysis was performed. RESULTS: Acid etching but not alkaline etching of sandblasted ZrO2 implants caused more bone-to-implant contact than sandblasted ZrO2 implants. The bone area was unaffected by the surface modifications. Acid and alkaline etching both increased the formation of multinucleated giant cells at the implant surface. CONCLUSIONS: This study provides a scientific basis to further investigate the impact of acid etching of sandblasted ZrO2 implants on osseointegration and the role of multinucleated giant cells in this process.
Resumo:
The 146Sm–142Nd system plays a central role in tracing the silicate differentiation of the Earth prior to 4.1 Ga. After this time, given its initial abundance, the 146Sm can be considered to be extinct. Upadhyay et al. (2009) reported unexpected negative 142Nd anomalies in 1.48 Ga rocks of the Khariar nepheline syenite complex (India) and inferred that an early enriched, low-Sm/Nd reservoir must have contributed to the mantle source rocks of the Khariar complex. As 146Sm had been effectively extinct for about 2.6 billion years before the crystallisation of the Khariar samples, this Nd signature should have remained isolated from the convective mantle for at least that long. It was thus suggested that the source rock of Khariar samples had been sequestered in the lithospheric root of the Indian craton. Using a different chemical separation method, and a different Thermal Ionization Mass Spectrometry (TIMS) analysis protocol, the present study attempted to replicate these negative 142Nd anomalies, but none were found. To determine which data set is correct, we investigated three possible sources of bias between them: imperfect cancellation of Faraday collector efficiencies during multidynamic TIMS analysis, rapid sample fractionation between the sequential measurement of 146Nd/144Nd and 142Nd/144Nd, and non-exponential law behaviour resulting from so-called “domain mixing.” Incomplete cancellation of collector efficiencies was found unlikely to cause resolvable biases at the estimated level of variation among collector efficiencies. Even in the case of highly variable efficiency and resolvable biases, there is no reason to suspect that they would reproducibly affect only four rocks out of 10 analysed by Upadhyay et al. (2009). Although domain mixing may explain apparent “reverse” fractionation trends observed in some TIMS analyses, it cannot be the cause of the apparent negative anomalies in the study of Upadhyay et al. (2009). It was determined that rapid mass fractionation during the course of a multidynamic TIMS analysis can bias all measured Nd ratios. After applying an approximate correction for this effect, only one rock from Upadhyay et al. (2009) retained an apparent negative 142Nd anomaly. This, in conjunction with our new, anomaly-free data set measured at fractionation rates too low to cause bias, leads to the conclusion that the anomalies reported by Upadhyay et al. (2009) are a subtle and reproducible analytical artefact. The absence of negative 142Nd anomalies in these rocks relaxes the need for a mechanism (other than crust formation) that can isolate a Nd reservoir from the convective mantle for billions of years.
Resumo:
Experience is lacking with mineral scaling and corrosion in enhanced geothermal systems (EGS) in which surface water is circulated through hydraulically stimulated crystalline rocks. As an aid in designing EGS projects we have conducted multicomponent reactive-transport simulations to predict the likely characteristics of scales and corrosion that may form when exploiting heat from granitoid reservoir rocks at ∼200 °C and 5 km depth. The specifications of an EGS project at Basel, Switzerland, are used to constrain the model. The main water–rock reactions in the reservoir during hydraulic stimulation and the subsequent doublet operation were identified in a separate paper (Alt-Epping et al., 2013b). Here we use the computed composition of the reservoir fluid to (1) predict mineral scaling in the injection and production wells, (2) evaluate methods of chemical geothermometry and (3) identify geochemical indicators of incipient corrosion. The envisaged heat extraction scheme ensures that even if the reservoir fluid is in equilibrium with quartz, cooling of the fluid will not induce saturation with respect to amorphous silica, thus eliminating the risk of silica scaling. However, the ascending fluid attains saturation with respect to crystalline aluminosilicates such as albite, microcline and chlorite, and possibly with respect to amorphous aluminosilicates. If no silica-bearing minerals precipitate upon ascent, reservoir temperatures can be predicted by classical formulations of silica geothermometry. In contrast, Na/K concentration ratios in the production fluid reflect steady-state conditions in the reservoir rather than albite–microcline equilibrium. Thus, even though igneous orthoclase is abundant in the reservoir and albite precipitates as a secondary phase, Na/K geothermometers fail to yield accurate temperatures. Anhydrite, which is present in fractures in the Basel reservoir, is predicted to dissolve during operation. This may lead to precipitation of pyrite and, at high exposure of anhydrite to the circulating fluid, of hematite scaling in the geothermal installation. In general, incipient corrosion of the casing can be detected at the production wellhead through an increase in H2(aq) and the enhanced precipitation of Fe-bearing aluminosilicates. The appearance of magnetite in scales indicates high corrosion rates.
Resumo:
An accurate and efficient determination of the highly toxic Cr(VI) in solid materials is important to determine the total Cr(VI) inventory of contaminated sites and the Cr(VI) release potential from such sites into the environment. Most commonly, total Cr(VI) is extracted from solid materials following a hot alkaline extraction procedure (US EPA method 3060A) where a complete release of water-extractable and sparingly soluble Cr(VI) phase is achieved. This work presents an evaluation of matrix effects that may occur during the hot alkaline extraction and in the determination of the total Cr(VI) inventory of variably composed contaminated soils and industrial materials (cement, fly ash) and is compared to water-extractable Cr(VI) results. Method validation including multiple extractions and matrix spiking along with chemical and mineralogical characterization showed satisfying results for total Cr(VI) contents for most of the tested materials. However, unreliable results were obtained by applying method 3060A to anoxic soils due to the degradation of organic material and/or reactions with Fe2+-bearing mineral phases. In addition, in certain samples discrepant spike recoveries have to be also attributed to sample heterogeneity. Separation of possible extracted Cr(III) by applying cation-exchange cartridges prior to solution analysis further shows that under the hot alkaline extraction conditions only Cr(VI) is present in solution in measurable amounts, whereas Cr(III) gets precipitated as amorphous Cr(OH)3(am). It is concluded that prior to routine application of method 3060A to a new material type, spiking tests are recommended for the identification of matrix effects. In addition, the mass of extracted solid material should to be well adjusted to the heterogeneity of the Cr(VI) distribution in the material in question.