18 resultados para albendazole
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The search for novel therapeutic options to cure alveolar echinococcosis (AE), due to the metacestode of Echinococcus multilocularis, is ongoing, and these developments could also have a profound impact on the treatment of cystic echinococcosis (CE), caused by the closely related Echinococcus granulosus s.l. Several options are being explored. A viable strategy for the identification of novel chemotherapeutically valuable compounds includes whole-organism drug screening, employing large-scale in vitro metacestode cultures and, upon identification of promising compounds, verification of drug efficacy in small laboratory animals. Clearly, the current focus is targeted towards broad-spectrum anti-parasitic or anti-cancer drugs and compound classes that are already marketed, or that are in development for other applications. The availability of comprehensive Echinococcus genome information and gene expression data, as well as significant progress on the molecular level, has now opened the door for a more targeted drug discovery approach, which allows exploitation of defined pathways and enzymes that are essential for the parasite. In addition, current in vitro and in vivo models that are used to assess drug efficacy should be optimized and complemented by methods that give more detailed information on the host-parasite interactions that occur during drug treatments. The key to success is to identify, target and exploit those parasite molecules that orchestrate activities essential to parasite survival.
Resumo:
The current chemotherapeutic treatment of alveolar echinococcosis (AE) in humans is based on albendazole and/or mebendazole. However, the costs of treatment, life-long consumption of drugs, parasitostatic rather than parasiticidal activity of chemotherapy, and high recurrence rates after treatment interruption warrant more efficient treatment options. Experimental treatment of mice infected with Echinococcus multilocularis metacestodes with fenbendazole revealed similar efficacy to albendazole. Inspection of parasite tissue from infected and benzimidazole-treated mice by transmission electron microscopy (TEM) demonstrated drug-induced alterations within the germinal layer of the parasites, and most notably an almost complete absence of microtriches. On the other hand, upon in vitro exposure of metacestodes to benzimidazoles, no phosphoglucose isomerase activity could be detected in medium supernatants during treatment with any of these drugs, indicating that in vitro treatment did not severely affect the viability of metacestode tissue. Corresponding TEM analysis also revealed a dramatic shortening/retraction of microtriches as a hallmark of benzimidazole action, and as a consequence separation of the acellular laminated layer from the cellular germinal layer. Since TEM did not reveal any microtubule-based structures within Echinococcus microtriches, this effect cannot be explained by the previously described mechanism of action of benzimidazoles targeting β-tubulin, thus benzimidazoles must interact with additional targets that have not been yet identified. In addition, these results indicate the potential usefulness of fenbendazole for the chemotherapy of AE.
Resumo:
Alveolar echinococcosis (AE) is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis and causes severe disease in the human liver, and occasionally in other organs, that is fatal when treatment is unsuccessful. The present chemotherapy against AE is based on mebendazole and albendazole. Albendazole treatment has been found to be ineffective in some instances, is parasitostatic rather than parasiticidal, and usually involves the lifelong uptake of large doses of drugs. Thus, new treatment options are urgently needed. In this study we investigated the in vitro and in vivo efficacy of mefloquine against E. multilocularis metacestodes. Treatment using mefloquine (20 muM) against in vitro cultures of metacestodes resulted in rapid and complete detachment of large parts of the germinal layer from the inner surface of the laminated layer within a few hours. The in vitro activity of mefloquine was dependent on the dosage. In vitro culture of metacestodes in the presence of 24 muM mefloquine for a period of 10 days was parasiticidal, as determined by murine bioassays, while treatment with 12 muM was not. Oral application of mefloquine (25 mg/kg of body weight administered twice a week for a period of 8 weeks) in E. multilocularis-infected mice was ineffective in achieving any reduction of parasite weight, whereas treatment with albendazole (200 mg/kg/day) was highly effective. However, when the same mefloquine dosage was applied intraperitoneally, the reduction in parasite weight was similar to the reduction seen with oral albendazole application. Combined application of both drugs did not increase the treatment efficacy. In conclusion, mefloquine represents an interesting drug candidate for the treatment of AE, and these results should be followed up in appropriate in vivo studies.
Resumo:
OBJECTIVES: The protozoan parasite Giardia lamblia causes the intestinal disease giardiasis, which may lead to acute and chronic diarrhoea in humans and various animal species. For treatment of this disease, several drugs such as the benzimidazole albendazole, the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are currently in use. Previously, a G. lamblia nitroreductase 1 (GlNR1) was identified as a nitazoxanide-binding protein. The aim of the present project was to elucidate the role of this enzyme in the mode of action of the nitro drugs nitazoxanide and metronidazole. METHODS: Recombinant GlNR1 was overexpressed in both G. lamblia and Escherichia coli (strain BL21). The susceptibility of the transfected bacterial and giardial cell lines to nitazoxanide and metronidazole was analysed. RESULTS: G. lamblia trophozoites overexpressing GlNR1 had a higher susceptibility to both nitro drugs. E. coli were fully resistant to nitazoxanide under both aerobic and semi-aerobic growth conditions. When grown semi-aerobically, bacteria overexpressing GlNR1 became susceptible to nitazoxanide. CONCLUSIONS: These findings suggest that GlNR1 activates nitro drugs via reduction yielding a cytotoxic product.
Resumo:
The current chemotherapy of alveolar echinococcosis (AE) is based on benzimidazoles such as albendazole and has been shown to be parasitostatic rather than parasiticidal, requiring lifelong duration. Thus, new and more efficient treatment options are urgently needed. By employing a recently validated assay based on the release of functional phosphoglucose isomerase (PGI) from dying parasites, the activities of 26 dicationic compounds and of the (+)- and (-)-erythro-enantiomers of mefloquine were investigated. Initial screening of compounds was performed at 40 muM, and those compounds exhibiting considerable antiparasitic activities were also assessed at lower concentrations. Of the dicationic drugs, DB1127 (a diguanidino compound) with activities comparable to nitazoxanide was further studied. The activity of DB1127 was dose dependent and led to severe structural alterations, as visualized by electron microscopy. The (+)- and (-)-erythro-enantiomers of mefloquine showed similar dose-dependent effects, although higher concentrations of these compounds than of DB1127 were required for metacestode damage. In conclusion, of the drugs investigated here, the diguanidino compound DB1127 represents the most promising compound for further study in appropriate in vivo models for Echinococcus multilocularis infection.
Resumo:
OBJECTIVES: The disease alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is fatal if treatment is unsuccessful. Current treatment options are, at best, parasitostatic, and involve taking benzimidazoles (albendazole, mebendazole) for the whole of a patient's life. In conjunction with the recent development of optimized procedures for E. multilocularis metacestode cultivation, we aimed to develop a rapid and reliable drug screening test, which enables efficient screening of a large number of compounds in a relatively short time frame. METHODS: Metacestodes were treated in vitro with albendazole, the nitro-thiazole nitazoxanide and 29 nitazoxanide derivatives. The resulting leakage of phosphoglucose isomerase (PGI) activity into the medium supernatant was measured and provided an indication of compound efficacy. RESULTS: We show that upon in vitro culture of E. multilocularis metacestodes in the presence of active drugs such as albendazole, the nitro-thiazole nitazoxanide and 30 different nitazoxanide derivatives, the activity of PGI in culture supernatants increased. The increase in PGI activity correlated with the progressive degeneration and destruction of metacestode tissue in a time- and concentration-dependent manner, which allowed us to perform a structure-activity relationship analysis on the thiazolide compounds used in this study. CONCLUSIONS: The assay presented here is inexpensive, rapid, can be used in 24- and 96-well formats and will serve as an ideal tool for first-round in vitro tests on the efficacy of large numbers of antiparasitic compounds.
Resumo:
Echinococcus multilocularis and Echinococcus granulosus metacestode infections in humans cause alveolar echinococcosis and cystic echinococcosis, respectively, in which metacestode development in visceral organs often results in particular organ failure. Further, cystic hydatidosis in farm animals causes severe economic losses. Although benzimidazole derivatives such as mebendazole and albendazole are being used as therapeutic agents, there is often no complete recovery after treatment. Hence, in searching for novel treatment options, we examined the in vitro efficacies of a number of isoflavones against Echinococcus metacestodes and protoscoleces. The most prominent isoflavone, genistein, exhibits significant metacestodicidal activity in vitro. However, genistein binds to the estrogen receptor and can thus induce estrogenic effects, which is a major concern during long-term chemotherapy. We have therefore investigated the activities of a number of synthetic genistein derivatives carrying a modified estrogen receptor binding site. One of these, Rm6423, induced dramatic breakdown of the structural integrity of the metacestode germinal layer of both species within 5 to 7 days of in vitro treatment. Further, examination of the culture medium revealed increased leakage of parasite proteins into the medium during treatment, but zymography demonstrated a decrease in the activity of metalloproteases. Moreover, two of the genistein derivatives, Rm6423 and Rm6426, induced considerable damage in E. granulosus protoscoleces, rendering them nonviable. These findings demonstrate that synthetic isoflavones exhibit distinct in vitro effects on Echinococcus metacestodes and protoscoleces, which could potentially be exploited further for the development of novel chemotherapeutical tools against larval-stage Echinococcus infection.
Resumo:
Larval infection with Echinococcus multilocularis starts with the intrahepatic postoncospheral development of a metacestode that-at its mature stage-consists of an inner germinal and an outer laminated layer (GL ; LL). In certain cases, an appropriate host immune response may inhibit parasite proliferation. Several lines of evidence obtained in vivo and in vitro indicate the important bio-protective role of the LL. For instance, the LL has been proposed to protect the GL from nitric oxide produced by periparasitic macrophages and dendritic cells, and also to prevent immune recognition by surrounding T cells. On the other hand, the high periparasitic NO production by peritoneal exsudate cells contributes to periparasitic immunosuppression, explaining why iNOS deficienct mice exhibit a significantly lower susceptibility towards experimental infection. The intense periparasitic granulomatous infiltration indicates a strong host-parasite interaction, and the involvement of cellular immunity in control of the metacestode growth kinetics is strongly suggested by experiments carried out in T cell deficient mouse strains. Carbohydrate components of the LL, such as Em2(G11) and Em492, as well as other parasite metabolites yield immunomodulatory effects that allow the parasite to survive in the host. I.e., the IgG response to the Em2(G11)-antigen takes place independently of alpha-beta+CD4+T cells, and in the absence of interactions between CD40 and CD40 ligand. Such parasite molecules also interfere with antigen presentation and cell activation, leading to a mixed Th1/Th2-type response at the later stage of infection. Furthermore, Em492 and other (not yet published) purified parasite metabolites suppress ConA and antigen-stimulated splenocyte proliferation. Infected mouse macrophages (AE-MØ) as antigen presenting cells (APC) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells when compared to normal MØ. As AE-MØ fully maintain their capacity to appropriately process antigens, a failure in T cell receptor occupancy by antigen-Ia complex or/and altered co-stimulatory signals can be excluded. Studying the status of accessory molecules implicated in T cell stimulation by MØ, it could be shown that B7-1 (CD80) and B7-2 (CD86) remained unchanged, whereas CD40 was down-regulated and CD54 (=ICAM-1) slightly up-regulated. FACS analysis of peritoneal cells revealed a decrease in the percentage of CD4+ and CD8+T cells in AE-infected mice. Taken together the obstructed presenting-activity of AE-MØ appeared to trigger an unresponsiveness of T cells leading to the suppression of their clonal expansion during the chronic phase of AE infection. Interesting information on the parasite survival strategy and potential can be obtained upon in vitro and in vivo treatment. Hence, we provided very innovative results by showing that nitazoxanide, and now also, respectively, new modified compounds may represent a useful alternative to albendazole. In the context of chemotherapeutical repression of parasite growth, we searched also for parasite molecules, whose expression levels correlate with the viability and growth activity of E. multilocularis metacestode. Expression levels of 14-3-3 and II/3-10, relatively quantified by realtime reverse transcription-PCR using a housekeeping gene beta-actin, were studied in permissive nu/nu and in low-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro-treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide for a period of 8 days resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels,
Resumo:
Echinococcus granulosus and Echinococcus multilocularis are cestode parasites, of which the metacestode (larval) stages cause the diseases cystic echinococcosis (CE) and alveolar echinococcosis (AE), respectively. Albendazole and mebendazole are presently used for chemotherapeutical treatment. However, these benzimidazoles do not appear to be parasiticidal in vivo against AE. In addition, failures in drug treatments as well as the occurrence of side-effects have been reported. New drugs are needed to cure AE and CE, which are considered to be neglected diseases. Strategies currently being implemented to identify novel chemotherapeutical treatment options include (i) conventional primary in vitro testing of broad-spectrum anti-infective drugs, either in parallel with, or followed by, animal experimentation; (ii) studies of drugs which interfere with the proliferation of cancer cells and of Echinococcus metacestodes; (iii) exploitation of the similarities between the parasite and mammalian signalling machineries, with a special focus on targeting specific signalling receptors; (iv) in silico approaches, employing the current Echinococcus genomic database information to search for suitable targets for compounds with known modes of action. In the present article, we review the efforts toward obtaining better anti-parasitic compounds which have been undertaken to improve chemotherapeutical treatment of echinococcosis, and summarize the achievements in the field of host-parasite interactions which may also lead to new immuno-therapeutical options.
Resumo:
Encephalitozoon cuniculi was documented to cause disseminated microsporidial infection including an iris tumor and endophthalmitis in an adolescent with idiopathic CD4+ T-lymphocytopenia. The diagnosis was established by microscopic, serologic and molecular methods. E. cuniculi (rabbit strain) was identified from the iris tumor, as well as from urine, conjunctival, corneal, and nasal swabs. Treatment with oral albendazole led to rapid improvement. This case raises the possibility of disseminated microsporidial infection in the context of idiopathic CD4+ T-lymphocytopenia and possibly advanced human immunodeficiency virus (HIV) infection, and above all the possibility of intraocular infection with E. cuniculi in humans.
Resumo:
An echinococcal cyst of the heart is a rare cause of acute cardiac tamponade. We report on a 24 year old male from the Kosovo who was brought in an emergency state from a provincial hospital complaining of severe dyspnea, thoracic pain, dizziness, and a short period of unconsciousness. Surgical decompression had to be performed urgently, because the pericardium could not be punctuated due to the position of the hydatid cyst. The differential diagnosis was cardiac tumor or echinococcal cyst. Because of a negative result of a test for anti-echinococcal antibodies (indirect haemagglutination) and no eosinophilia (5%), the diagnosis of hydatid cyst was at first discarded. Later on, the test for anti-echinococcal antibodies became positive and a marked eosinophilia (59%) was manifest. In combination with a typical appearance in the echocardiograph and NMR, the diagnosis of a cardiac hydatid cyst was made. After preoperative treatment with albendazole, the cyst was sterilized with a 20% NaCl solution and the contents evacuated. The therapy with albendazole was continued. When last seen eight months after the first incidence, the patient was well except some degree of dyspnea on exertion. As a differential diagnosis of a cardiac tumor, a hydatid cyst should be taken into account in patients from an area where Echinococcus granulosus is endemic. A negative test on antiechinococcal antibodies and the absence of eosinophilia do not rule out echinococcosis.
Resumo:
Echinococcus granulosus and Echinococcus multilocularis are cestode parasites, of which the metacestode (larval) stages cause the neglected diseases cystic echinococcosis (CE) and alveolar echinococcosis (AE), respectively. The benzimidazoles albendazole and mebendazole are presently used for the chemotherapeutical treatment, alone or prior to and after surgery. However, in AE these benzimidazoles do not appear to be parasiticidal in vivo. In addition, failures in drug treatments as well as the occurrence of side-effects have been reported, leading to discontinuation of treatment or to progressive disease. Therefore, new drugs are needed to cure AE and CE. Strategies that are currently employed in order to identify novel chemotherapeutical treatment options include in vitro and in vivo testing of broad-spectrum anti-infective drugs or drugs that interfere with unlimited proliferation of cancer cells. The fact that the genome of E. multilocularis has recently been sequenced has opened other avenues, such as the selection of novel drugs that interfere with the parasite signalling machinery, and the application of in silico approaches by employing the Echinococcus genome information to search for suitable targets for compounds of known mode of action.
Resumo:
BACKGROUND: Alveolar echinococcosis (AE) is caused by the larval stage (metacestode) of Echinococcus multilocularis. The domestic dog can act as a definitive host and harbor adult cestodes in its small intestine or become an aberrant intermediate host carrying larval stages that may cause severe lesions in the liver, lungs and other organs with clinical signs similar to AE in humans. CASE PRESENTATION: A case of canine AE, affecting the liver and prostate with development of multilocular hydatid paraprostatic cysts and possible lung involvement is described in an 8-year-old neutered male Labrador retriever dog.The dog presented with progressive weight loss, acute constipation, stranguria and a suspected soft tissue mass in the sublumbar region. Further evaluation included computed tomography of the thorax and abdomen, which revealed cystic changes in the prostate, a paraprostatic cyst, as well as lesions in the liver and lungs. Cytological examination of fine-needle aspirates of the liver, prostate and paraprostatic cyst revealed parasitic hyaline membranes typical of an Echinococcus infection and the presence of E. multilocularis-DNA was confirmed by PCR. The dog was treated with albendazole and debulking surgery was considered in case there was a good response to antiparasitic treatment. Constipation and stranguria resolved completely. Six months after the definitive diagnosis, the dog was euthanized due to treatment-resistant ascites and acute anorexia and lethargy. CONCLUSIONS: To the authors' knowledge, this is the first publication of an E. multilocularis infection in a dog causing prostatic and paraprostatic cysts. Although rare, E. multilocularis infection should be considered as an extended differential diagnosis in dogs presenting with prostatic and paraprostatic disease, especially in areas where E. multilocularis is endemic.
Resumo:
Alveolar echinococcosis (AE) in humans is a parasitic disease characterized by severe damage to the liver and occasionally other organs. AE is caused by infection with the metacestode (larval) stage of the fox tapeworm Echinococcus multilocularis, usually infecting small rodents as natural intermediate hosts. Conventionally, human AE is chemotherapeutically treated with mebendazole or albendazole. There is, however still the need for improved chemotherapeutical options. Primary in vivo studies on drugs of interest are commonly performed in small laboratory animals such as mice and Mongolian jirds, and in most cases, a secondary infection model is used, whereby E. multilocularis metacestodes are directly injected into the peritoneal cavity or into the liver. Disadvantages of this methodological approach include risk of injury to organs during the inoculation and, most notably, a limitation in the macroscopic (visible) assessment of treatment efficacy. Thus, in order to monitor the efficacy of chemotherapeutical treatment, animals have to be euthanized and the parasite tissue dissected. In the present study, mice were infected with E. multilocularis metacestodes through the subcutaneous route and were then subjected to chemotherapy employing albendazole. Serological responses to infection were comparatively assessed in mice infected by the conventional intraperitoneal route. We demonstrate that the subcutaneous infection model for secondary AE facilitates the assessment of the progress of infection and drug treatment in the live animal.
Resumo:
Alveolar echinococcosis (AE) is a disease predominantly affecting the liver, with metacestodes (larvae) of the tapeworm Echinococcus multilocularis proliferating and exhibiting tumor-like infiltrative growth. For many years, chemotherapeutical treatment against alveolar echinococcosis has relied on the benzimidazoles albendazole and mebendazole, which require long treatment durations and exhibit parasitostatic rather than parasiticidal efficacy. Although benzimidazoles have been and still are beneficial for the patients, there is clearly a demand for alternative and more efficient treatment options. Aromatic dications, more precisely a small panel of di-N-aryl-diguanidino compounds, were screened for efficacy against E. multilocularis metacestodes in vitro. Only those with a thiophene core group were active against metacestodes, while furans were not. The most active compound, DB1127, was further investigated in terms of in vivo efficacy in mice experimentally infected with E. multilocularis metacestodes. This diguanidino compound was effective against AE when administered intraperitoneally but not when applied orally. Thus, thiophene-diguanidino derivatives with improved bioavailability when administered orally could lead to treatment options against AE.