2 resultados para air safety

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Percutaneous closure of patent foramen ovale (PFO) is generally performed using intra-procedural guidance by transoesophageal (TEE) or intracardiac (ICE) echocardiography. While TEE requires sedation or general anaesthesia, ICE is costly and adds incremental risk, and both imaging modalities lengthen the procedure. METHODS: A total of 825 consecutive patients (age 51 +/- 13 years; 58% male) underwent percutaneous PFO closure solely under fluoroscopic guidance, without intra-procedural echocardiography. The indications for PFO closure were presumed paradoxical embolism in 698 patients (95% cerebral, 5% other locations), an embolic event with concurrent aetiologies in 47, diving in 51, migraine headaches in 13, and other reasons in 16. An atrial septal aneurysm was associated with the PFO in 242 patients (29%). RESULTS: Permanent device implantation failed in two patients (0.2%). There were 18 procedural complications (2.2%), including embolization of the device or parts of it in five patients with successful percutaneous removal in all cases, air embolism with transient symptoms in four patients, pericardial tamponade requiring pericardiocentesis in one patient, a transient ischaemic attack with visual symptoms in one patient, and vascular access site problems in seven patients. There were no long-term sequelae. Contrast TEE at six months showed complete abolition of right-to-left shunt via PFO in 88% of patients, whereas a minimal, moderate or large residual shunt persisted in 7%, 3%, and 2%, respectively. CONCLUSIONS: This study confirms the safety and feasibility of percutaneous PFO closure without intra-procedural echocardiographic guidance in a large cohort of consecutive patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing.