9 resultados para aging process
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Novel magnetic resonance imaging sequences have and still continue to play an increasing role in neuroimaging and neuroscience. Among these techniques, diffusion-weighted imaging (DWI) has revolutionized the diagnosis and management of diseases such as stroke, neoplastic disease and inflammation. However, the effects of aging on diffusion are yet to be determined. To establish reference values for future experimental mouse studies we tested the hypothesis that absolute apparent diffusion coefficients (ADC) of the normal brain change with age. A total of 41 healthy mice were examined by T2-weighted imaging and DWI. For each animal ADC frequency histograms (i) of the whole brain were calculated on a voxel-by-voxel basis and region-of-interest (ROI) measurements (ii) performed and related to the animals' age. The mean entire brain ADC of mice <3 months was 0.715(+/-0.016) x 10(-3) mm2/s, no significant difference to mice aged 4 to 5 months (0.736(+/-0.040) x 10(-3) mm2/s) or animals older than 9 months 0.736(+/-0.020) x 10(-3) mm2/s. Mean whole brain ADCs showed a trend towards lower values with aging but both methods (i + ii) did not reveal a significant correlation with age. ROI measurements in predefined areas: 0.723(+/-0.057) x 10(-3) mm2/s in the parietal lobe, 0.659(+/-0.037) x 10(-3) mm2/s in the striatum and 0.679(+/-0.056) x 10(-3) mm2/s in the temporal lobe. With advancing age, we observed minimal diffusion changes in the whole mouse brain as well as in three ROIs by determination of ADCs. According to our data ADCs remain nearly constant during the aging process of the brain with a small but statistically non-significant trend towards a decreased diffusion in older animals.
Resumo:
The occurrence of degenerative spinal disease subsequent to dystonic movement disorders has been neglected and has received more attention only recently. Spinal surgery is challenging with regard to continuous mechanical stress when treatment of the underlying movement disorder is insufficient. To characterize better the particular features of degenerative spinal disease in patients with dystonia and to analyze operative strategies, we reviewed the available published data. Epidemiologic studies reveal that degenerative spinal disorders in patients with dystonia and choreoathetosis occur much earlier than in the physiological aging process. Dystonic movement disorders more often affect the spine at higher cervical levels (C(2-5)), in contrast to spinal degeneration with age which manifests more frequently at the middle and lower cervical spine (C(5-7)). Degenerative changes of the cervical spine are more likely to occur on the side where the chin is rotated or tilted to. Various operative approaches for treatment of spinal pathologies have been advocated in patients with dystonic movement disorders. The available data do not allow making firm statements regarding the superiority of one approach over the other. Posterior approaches were first used for decompression, but additional anterior fusion became necessary in many instances. Anterior approaches with or without instrumented fusion yielded more favorable results, but drawbacks are pseudarthrosis and adjacent-level disease. Parallel to the development of posterior fusion techniques, circumferential surgery was suggested to provide a maximum degree of cord decompression and a higher fusion rate. Perioperative local injections of botulinum toxin were used initially to enhance patient comfort with halo immobilization, but they are also applied in patients without external fixation nowadays. Treatment algorithms directed at the underlying movement disorder itself, taking advantage of new techniques of functional neurosurgery, combined with spinal surgery have recently been introduced and show promising results.
Resumo:
Melatonin has been postulated to have diverse properties, acting as an antioxidant, a neuroprotector, or a stabilizer within the circadian timing system, and is thus thought to be involved in the aging process and Alzheimer's disease (AD). We used computed tomography to determine the degree of pineal calcification (DOC), an intra-individual melatonin deficit marker, as well as the size of uncalcified pineal tissue, in 279 consecutive memory clinic outpatients (AD: 155; other dementia: 25; mild cognitive impairment: 33; depression: 66) and 37 age-matched controls. The size of uncalcified pineal tissue in patients with AD (mean 0.15 cm(2) [S.D. 0.24]) was significantly smaller than in patients with other types of dementia (0.26 [0.34]; P=0.038), with depression (0.28 [0.34]; P=0.005), or in controls (0.25 [0.31]; P=0.027). Additionally, the DOC in patients with AD (mean 76.2% [S.D. 26.6]) was significantly higher than in patients with other types of dementia (63.7 [34.7]; P=0.042), with depression (60.5 [33.8]; P=0.001), or in controls (64.5 [30.6]; P=0.021). These two findings may reflect two different aspects of melatonin in AD. On the one hand, the absolute amount of melatonin excretion capability, as indicated by uncalcified pineal volume, refers to the antioxidant properties of melatonin. On the other hand, the relative reduction in melatonin production capability in the individual, as indicated by DOC, refers to the circadian properties of melatonin.
Resumo:
PURPOSE: The aim of this study was to assess long-term changes in position of soft tissue landmarks following mandibular advancement and setback surgery. MATERIALS AND METHODS: Twenty-seven patients (14 women, 13 men; mean age, 36 years) who had undergone either mandibular advancement (15 patients) or setback surgery (12 patients), were available for a long-term follow-up an average of 12 years postoperatively. In all of these cases, lateral cephalometric radiographs taken immediately before operation, at 1 week, 14 months, and 12 years postoperatively, were studied. RESULTS: During the 14 months postoperatively, soft tissue chin and mentolabial fold followed its underlying hard tissue in all patients. A continuous skeletal relapse was observable 12 years after mandibular advancement, but soft tissue chin moved more in an anterior direction. After mandibular setback, soft and hard tissue landmarks remained almost unchanged. Over the entire observation period, a thickening of soft tissue at pogonion was generally seen, and particularly a thickening of the whole chin in the setback group. All patients showed a significant lengthening and thinning of the upper lip. In all except 2 males, the patient's body weight increased markedly. CONCLUSION: In contrast to the immediate postoperative stage, soft tissue changes observed an average of 12 years after the primary operation do not directly follow the movements of the underlying skeletal structure. The soft tissue profile changes observed over such a long term seem to be influenced not only by the underlying skeletal structure but also by other factors such as weight gain and aging process.
Resumo:
The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.
Resumo:
BACKGROUND The heart is subject to structural and functional changes with advancing age. However, the magnitude of cardiac age-dependent transformation has not been conclusively elucidated. METHODS This retrospective cardiac magnetic resonance (CMR) study included 183 subjects with normal structural and functional ventricular values. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were obtained from the left and the right ventricle in breath-hold cine CMR. Patients were classified into four age groups (20-29, 30-49, 50-69, and ≥70 years) and cardiac measurements were compared using Pearson's rank correlation over the four different groups. RESULTS With advanced age a slight but significant decrease in ESV (r=-0.41 for both ventricles, P<0.001) and EDV (r=-0.39 for left ventricle, r=-0.35 for right ventricle, P<0.001) were observed associated with a significant increase in left (r=0.28, P<0.001) and right (r=0.27, P<0.01) ventricular EF reaching a maximal increase in EF of +8.4% (P<0.001) for the left and +6.1% (P<0.01) for the right ventricle in the oldest compared to the youngest patient group. Left ventricular myocardial mass significantly decreased over the four different age groups (P<0.05). CONCLUSIONS The aging process is associated with significant changes in left and right ventricular EF, ESV and EDV in subjects with no cardiac functional and structural abnormalities. These findings underline the importance of using age adapted values as standard of reference when evaluating CMR studies.
Resumo:
Ultraviolet-ozone treatment is used as a standard surface cleaning procedure for removal of molecular organic contamination from analytical and sensing devices. Here, it is applied for injection-molded polymer microcantilevers before characterization and sensing experiments. This article examines the effects of the surface cleaning process using commercial equipment, in particular on the performance and mechanical properties of the cantilevers. It can be shown that the first chemical aging process essentially consist of the cross linking of the polymer chains together with a physical aging of the material. For longer exposure, the expected thermo-oxidative formation of carbonyl groups sets in and an exposure dependent chemical degradation can be detected. A process time of 20 min was found suitable as a trade-off between cleaning and stability
Resumo:
Development of methods for rapid screening and stratification of subjects after exposure is an integral part of countermeasures against radiation. The potential demographic and exposure history-related heterogeneity of exposed populations warrants robust biomarkers that withstand and reflect such differences. In this study, the effect of aging and repeated exposure on the metabolic response to sublethal irradiation was examined in mice using UPLC-ESI-QTOF mass spectrometry. Aging attenuated postexposure elevation in excretions of DNA damage biomarkers as well as N(1)-acetylspermidine. Although N(1)-acetylspermidine and 2'-deoxyuridine elevation was highly correlated in all age groups, xanthine and N(1)-acetylspermidine elevation was poorly correlated in older mice. These results may reflect the established decline in DNA damage-repair efficiency associated with aging and indicate a novel role for polyamine metabolism in the process. Although repeated irradiation at long intervals did not affect the elevation of N(1)-acetylspermidine, 2'-deoxyuridine, and xanthine, it did significantly attenuate the elevation of 2'-deoxycytidine and thymidine compared to a single exposure. However, these biomarkers were found to identify exposed subjects with accuracy ranging from 82% (xanthosine) to 98% (2'-deoxyuridine), irrespective of their age and exposure history. This indicates that metabolic biomarkers can act as robust noninvasive signatures of sublethal radiation exposure.
Resumo:
Paper I: Corporate aging and internal resource allocation Abstract Various observers argue that established firms are at a disadvantage in pursuing new growth opportunities. In this paper, we provide systematic evidence that established firms allocate fewer resources to high-growth lines of business. However, we find no evidence of inefficient resource allocation in established firms. Redirecting resources from high-growth to low-growth lines of business does not result in lower profitability. Also, resource allocation towards new growth opportunities does not increase when managers of established firms are exposed to takeover and product market threats. Rather, it seems that conservative resource allocation strategies are driven by pressures to meet investors’ expectations. Our empirical evidence, thus, favors the hypothesis that established firms wisely choose to allocate fewer resources to new growth opportunities as external pressures force them to focus on efficiency rather than novelty (Holmström 1989). Paper II: Corporate aging and asset sales Abstract This paper asks whether divestitures are motivated by strategic considerations about the scope of the firm’s activities. Limited managerial capacity implies that exploiting core competences becomes comparatively more attractive than exploring new growth opportunities as firms mature. Divestitures help stablished firms free management time and increase the focus on core competences. The testable implication of this attention hypothesis is that established firms are the main sellers of assets, that their divestiture activity increases when managerial capacity is scarcer, that they sell non-core activities, and that they return the divestiture proceeds to the providers of capital instead of reinvesting them in the firm. We find strong empirical support for these predictions. Paper III: Corporate aging and lobbying expenditures Abstract Creative destruction forces constantly challenge established firms, especially in competitive markets. This paper asks whether corporate lobbying is a competitive weapon of established firms to counteract the decline in rents over time. We find a statistically and economically significant positive relation between firm age and lobbying expenditures. Moreover, the documented age-effect is weaker when firms have unique products or operate in concentrated product markets. To address endogeneity, we use industry distress as an exogenous nonlegislative shock to future rents and show that established firms are relatively more likely to lobby when in distress. Finally, we provide empirical evidence that corporate lobbying efforts by established firms forestall the creative destruction process. In sum, our findings suggest that corporate lobbying is a competitive weapon of established firms to retain profitability in competitive environments.