8 resultados para aggregation function
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Drug-drug interaction between statins metabolised by cytochrome P450 3A4 and clopidogrel have been claimed to attenuate the inhibitory effect of clopidogrel. However, published data regarding this drug-drug interaction are controversial. We aimed to determine the effect of fluvastatin and atorvastatin on the inhibitory effect of dual antiplatelet therapy with acetylsalicylic acid (ASA) and clopidogrel. One hundred one patients with symptomatic stable coronary artery disease undergoing percutaneous coronary intervention and drug-eluting stent implantation were enrolled in this prospective randomised study. After an interval of two weeks under dual antiplatelet therapy with ASA and clopidogrel, without any lipid-lowering drug, 87 patients were randomised to receive a treatment with either fluvastatin 80 mg daily or atorvastatin 40 mg daily in addition to the dual antiplatelet therapy for one month. Platelet aggregation was assessed using light transmission aggregometry and whole blood impedance platelet aggregometry prior to randomisation and after one month of receiving assigned statin and dual antiplatelet treatment. Platelet function assessment after one month of statin and dual antiplatelet therapy did not show a significant change in platelet aggregation from 1st to 2nd assessment for either statin group. There was also no difference between atorvastatin and fluvastatin treatment arms. In conclusion, neither atorvastatin 40 mg daily nor fluvastatin 80 mg daily administered in combination with standard dual antiplatelet therapy following coronary drug-eluting stent implantation significantly interfere with the antiaggregatory effect of ASA and clopidogrel.
Resumo:
An increased or disturbed activation and aggregation of platelets plays a major role in the pathophysiology of thrombosis and haemostasis and is related to cardiovascular disease processes. In addition to qualitative disturbances of platelet function, changes in thrombopoiesis or an increased elimination of platelets, (e. g., in autoimmune thrombocytopenia), are also of major clinical relevance. Flow cytometry is increasingly used for the specific characterisation of phenotypic alterations of platelets which are related to cellular activation, haemostatic function and to maturation of precursor cells. These new techniques also allow the study of the in vitro response of platelets to stimuli and the modification thereof under platelet-targeted therapy as well as the characterisation of platelet-specific antibodies. In this protocol, specific flow cytometric techniques for platelet analysis are recommended based on a description of the current state of flow cytometric methodology. These recommendations are an attempt to promote the use of these new techniques which are at present broadly evaluated for diagnostic purposes. Furthermore, the definition of the still open questions primarily related to the technical details of the method should help to promote the multi-center evaluation of procedures with the goal to finally develop standardized operation procedures as the basis of interlaboratory reproducibility when applied to diagnostic testing.
Resumo:
BACKGROUND AND OBJECTIVE: To investigate whether preemptive administered lornoxicam changes perioperative platelet function during thoracic surgery. METHODS: A total of 20 patients scheduled for elective thoracic surgery were randomly assigned to receive either lornoxicam (16 mg, i.v.; n = 10) or placebo (n = 10) preoperatively. All patients underwent treatment of solitary lung metastasis and denied any antiplatelet medication within the past 2 weeks. Blood samples were drawn via an arterial catheter directly into silicone-coated Vacutainer tubes containing 0.5 mL of 0.129 M buffered sodium citrate 3.8% before, 15 min, 4 h and 8 h after the study medication was administered. Platelet aggregation curves were obtained by whole blood electrical impedance aggregometry (Chrono Log). RESULTS: Platelet aggregation was significantly reduced 15 min, 4 h and 8 h after lornoxicam administration compared to placebo (P < 0.05) for collagen, adenosine diphosphate and arachidonic acid as trigger substances. Adenosine diphosphate-induced platelet aggregation decreased by 85% 15 min after lornoxicam administration, and remained impaired for 8 h. CONCLUSION: Platelet aggregation assays are impaired for at least 8 h after lornoxicam application. Therefore perioperative analgesia by use of lornoxicam should be carefully administered under consideration of subsequent platelet dysfunction.
Resumo:
1-deamino-8-d-arginine vasopressin (desmopressin [DDAVP]) is clinically efficacious in patients with mild platelet function disorders but it is not known which mechanisms mediate this effect. Our aim was to evaluate the impact of in vivo DDAVP administration in these patients. We assessed von Willebrand factor (VWF), factor VIII, platelet activation and aggregation, platelet-dependent thrombin generation, and platelet intracellular Na(+)/Ca(2+) fluxes, before and 2 and 4 hours after DDAVP (0.3 µg/kg). We found (1) no significant changes for P-selectin expression, PAC-1 binding, δ-granule content and secretion, and platelet-aggregation; (2) significant decreases of secretion of α-granules and GPIIb-IIIa activation induced by adenosine 5'-diphosphate, convulxin, and thrombin; (3) significant increases of procoagulant platelets induced by convulxin/thrombin and platelet-dependent thrombin generation; and (4) significant increases of intracellular Na(+)/Ca(2+) concentrations. We show that in vivo DDAVP selectively and markedly enhances the ability to form procoagulant platelets and increases platelet-dependent thrombin generation by enhancing Na(+)/Ca(2+) mobilization. This report indicates that the beneficial hemostatic effect of DDAVP is not limited to an increase in large VWF multimers. An enhancement of platelet procoagulant activity appears to be an additional and (at least in platelet disorders) -possibly clinically relevant mechanism of DDAVP's action.
Resumo:
Assays measuring platelet aggregation (thrombus formation) at arterial shear rate mostly use collagen as only platelet-adhesive surface. Here we report a multi-surface and multi-parameter flow assay to characterize thrombus formation in whole blood from healthy subjects and patients with platelet function deficiencies. A systematic comparison is made of 52 adhesive surfaces with components activating the main platelet-adhesive receptors, and of eight output parameters reflecting distinct stages of thrombus formation. Three types of thrombus formation can be identified with a predicted hierarchy of the following receptors: glycoprotein (GP)VI, C-type lectin-like receptor-2 (CLEC-2)>GPIb>α6β1, αIIbβ3>α2β1>CD36, α5β1, αvβ3. Application with patient blood reveals distinct abnormalities in thrombus formation in patients with severe combined immune deficiency, Glanzmann's thrombasthenia, Hermansky-Pudlak syndrome, May-Hegglin anomaly or grey platelet syndrome. We suggest this test may be useful for the diagnosis of patients with suspected bleeding disorders or a pro-thrombotic tendency.
Resumo:
Eosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly.
Resumo:
BACKGROUND: Hyperosmolar therapy, using either mannitol or hypertonic saline (HTS), is considered the treatment of choice for intracranial hypertension. However, hyperosmolar agents may impair coagulation and platelet function, limiting their use in patients at risk for hemorrhage. Despite this, studies evaluating the effects of mannitol compared to other hyperosmolar agents in dogs are largely lacking. The aim of this study was to compare the in vitro effects on global hemostasis and platelet function of 20 % mannitol and 3 % HTS on canine blood. METHODS: Citrated whole blood from 15 healthy dogs was diluted with 0.9 % saline, 20 % mannitol and 3 % HTS in ratios of 1:16 and 1:8. Rotational thromboelastometry (ROTEM) was used to assess clotting time (CT), clot formation time (CFT) and maximal clot firmness (MCF) following extrinsic activation (Ex-tem) and after platelet inhibition (Fib-tem). A platelet function analyzer (PFA-100) was used to assess closure time (CtPFA). RESULTS: No significant differences were observed between untreated whole blood and samples diluted with saline. Samples diluted with both mannitol and HTS were hypocoagulable compared to untreated whole blood samples. At a dilution of 1:16, no significant differences were found between any measured parameter in samples diluted with saline compared to mannitol or HTS. At a 1:8 dilution, CtPFA was prolonged in samples diluted with mannitol and HTS compared to saline, and CtPFA was prolonged more with mannitol than HTS. Ex-tem CT was increased at a 1:8 dilution with mannitol compared to HTS. Ex-tem CFT was prolonged at a 1:8 dilution with both agents compared to saline, and was prolonged more with mannitol than HTS. Ex-tem MCF was reduced at a 1:8 dilution with both agents compared to saline. DISCUSSION AND CONCLUSIONS: Data in this study indicate that both mannitol and HTS affect canine platelet function and whole blood coagulation in vitro in a dose-dependent fashion. The most pronounced effects were observed after high dilutions with mannitol, which impaired platelet aggregation, clot formation time, clot strength, and fibrin formation significantly more than HTS. Further in vivo studies are necessary before recommendations can be made
Resumo:
RATIONALE Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function. OBJECTIVE To investigate the role of Sphk1- and Sphk2-derived S1P in the regulation of platelet function. METHODS AND RESULTS We found a 100-fold reduction in intracellular S1P levels in platelets derived from Sphk2(-/-) mutants compared with Sphk1(-/-) or wild-type mice, as analyzed by mass spectrometry. Sphk2(-/-) platelets also failed to secrete S1P on stimulation. Blood from Sphk2-deficient mice showed decreased aggregation after protease-activated receptor 4-peptide and adenosine diphosphate stimulation in vitro, as assessed by whole blood impedance aggregometry. We revealed that S1P controls platelet aggregation via the sphingosine 1-phosphate receptor 1 through modulation of protease-activated receptor 4-peptide and adenosine diphosphate-induced platelet activation. Finally, we show by intravital microscopy that defective platelet aggregation in Sphk2-deficient mice translates into reduced arterial thrombus stability in vivo. CONCLUSIONS We demonstrate that Sphk2 is the major Sphk isoform responsible for the generation of S1P in platelets and plays a pivotal intrinsic role in the control of platelet activation. Correspondingly, Sphk2-deficient mice are protected from arterial thrombosis after vascular injury, but have normal bleeding times. Targeting this pathway could therefore present a new therapeutic strategy to prevent thrombosis.