6 resultados para advanced material
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
So far, little is known about the interaction of nanoparticles with lung cells, the entering of nanoparticles, and their transport through the blood stream to other organs. The entering and localization of different nanoparticles consisting of differing materials and of different charges were studied in human red blood cells. As these cells do not have any phagocytic receptors on their surface, and no actinmyosin system, we chose them as a model for nonphagocytic cells to study how nanoparticles penetrate cell membranes. We combined different microscopic techniques to visualize fine and nanoparticles in red blood cells: (I) fluorescent particles were analyzed by laser scanning microscopy combined with digital image restoration, (II) gold particles were analyzed by conventional transmission electron microscopy and energy filtering transmission electron microscopy, and (III) titanium dioxide particles were analyzed by energy filtering transmission electron microscopy. By using these differing microscopic techniques we were able to visualize and detect particles < or = 0.2 microm and nanoparticles in red blood cells. We found that the surface charge and the material of the particles did not influence their entering. These results suggest that particles may penetrate the red blood cell membrane by a still unknown mechanism different from phagocytosis and endocytosis.
Resumo:
PURPOSE The aim was to assess changes of tumour hypoxia during primary radiochemotherapy (RCT) for head and neck cancer (HNC) and to evaluate their relationship with treatment outcome. MATERIAL AND METHODS Hypoxia was assessed by FMISO-PET in weeks 0, 2 and 5 of RCT. The tumour volume (TV) was determined using FDG-PET/MRI/CT co-registered images. The level of hypoxia was quantified on FMISO-PET as TBRmax (SUVmaxTV/SUVmean background). The hypoxic subvolume (HSV) was defined as TV that showed FMISO uptake ⩾1.4 times blood pool activity. RESULTS Sixteen consecutive patients (T3-4, N+, M0) were included (mean follow-up 31, median 44months). Mean TBRmax decreased significantly (p<0.05) from 1.94 to 1.57 (week 2) and 1.27 (week 5). Mean HSV in week 2 and week 5 (HSV2=5.8ml, HSV3=0.3ml) were significantly (p<0.05) smaller than at baseline (HSV1=15.8ml). Kaplan-Meier plots of local recurrence free survival stratified at the median TBRmax showed superior local control for less hypoxic tumours, the difference being significant at baseline and after 2weeks (p=0.031, p=0.016). CONCLUSIONS FMISO-PET documented that in most HNC reoxygenation starts early during RCT and is correlated with better outcome.
Resumo:
OBJECTIVE To report findings and outcomes of dogs with reherniation of nuclear material within 7 days of hemilaminectomy for acute thoracolumbar (TL) intervertebral disk extrusion. STUDY DESIGN Retrospective case series. ANIMALS Chondrodystrophic dogs (n = 11). METHODS Dogs with acute neurologic decline within 1 week of surgical decompression for TL disk extrusion were identified. Advanced imaging was used to document extradural spinal cord compression at the previous surgery site. Ten dogs had a 2nd decompressive surgery to remove extruded nuclear material. RESULTS All dogs had acute neurologic deterioration (average, 2 neurologic grades) 2-7 days after initial hemilaminectomy. Computed tomography (CT; n = 10) or myelography (n = 1) documented extradural spinal cord compression compatible with extruded disk material at the previous hemilaminectomy site. Dogs that had a 2nd surgical decompression improved neurologically within 24 hours and were paraparetic at discharge. The single dog that did not have decompressive surgery did not regain deep nociception during 185-day follow-up. CONCLUSIONS Early reherniation at the site of previous hemilaminectomy can produce acute deterioration of neurologic function and should be investigated with diagnostic imaging. Repeat decompressive surgery can lead to functional recovery.