164 resultados para adrenergic stimulation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inferolateral early repolarization (ER) and Brugada syndrome manifest with J waves. Isoproterenol suppresses recurrent ventricular arrhythmias while reducing J waves in both disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS:During β-adrenergic receptor (β-AR) stimulation, phosphorylation of cardiomyocyte ryanodine receptors by protein kinases may contribute to an increased diastolic Ca(2+) spark frequency. Regardless of prompt activation of protein kinase A during β-AR stimulation, this appears to rely more on activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), by a not yet identified signalling pathway. The goal of the present study was to identify and characterize the mechanisms which lead to CaMKII activation and elevated Ca(2+) spark frequencies during β-AR stimulation in single cardiomyocytes in diastolic conditions. METHODS AND RESULTS:Confocal imaging revealed that β-AR stimulation increases endogenous NO production in cardiomyocytes, resulting in NO-dependent activation of CaMKII and a subsequent increase in diastolic Ca(2+) spark frequency. These changes of spark frequency could be mimicked by exposure to the NO donor GSNO and were sensitive to the CaMKII inhibitors KN-93 and AIP. In vitro, CaMKII became nitrosated and its activity remained increased independent of Ca(2+) in the presence of GSNO, as assessed with biochemical assays. CONCLUSIONS:β-AR stimulation of cardiomyocytes may activate CaMKII by a novel direct pathway involving NO, without requiring Ca(2+) transients. This crosstalk between two established signalling pathways may contribute to arrhythmogenic diastolic Ca(2+) release and Ca(2+) waves during adrenergic stress, particularly in combination with cardiac diseases. In addition, NO-dependent activation of CaMKII is likely to have repercussions in many cellular signalling systems and cell types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-dependent refractoriness of calcium (Ca2+) release in cardiac myocytes is an important factor in determining whether pro-arrhythmic release patterns develop. At the subcellular level of the Ca2+ spark, recent studies have suggested that recovery of spark amplitude is controlled by local sarcoplasmic reticulum (SR) refilling whereas refractoriness of spark triggering depends on both refilling and the sensitivity of the ryanodine receptor (RyR) release channels that produce sparks. Here we studied regulation of Ca2+ spark refractoriness in mouse ventricular myocytes by examining how β-adrenergic stimulation influenced sequences of Ca2+ sparks originating from individual RyR clusters. Our protocol allowed us to separately measure recovery of spark amplitude and delays between successive sparks, and data were interpreted quantitatively through simulations with a stochastic mathematical model. We found that, compared with spark sequences measured under control conditions: (1) β-adrenergic stimulation with isoproterenol accelerated spark amplitude recovery and decreased spark-to-spark delays; (2) activating protein kinase A (PKA) with forskolin accelerated amplitude recovery but did not affect spark-to-spark delays; (3) inhibiting PKA with H89 retarded amplitude recovery and increased spark- to-spark delays; (4) preventing phosphorylation of the RyR at serine 2808 with a knock-in mouse prevented the decrease in spark-to-spark delays seen with β-adrenergic stimulation; (5) inhibiting either PKA or Ca2+/calmodulin-dependent protein kinase II (CaMKII) during β-adrenergic stimulation prevented the decrease in spark-to-spark delays seen) without inhibition. The results suggest that activation of either PKA or CaMKII is sufficient to speed SR refilling, but activation of both kinases appears necessary to observe increased RyR sensitivity. The data provide novel insight into β-adrenergic regulation of Ca2+ release refractoriness in mouse myocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The resting and maximum in situ cardiac performance of Newfoundland Atlantic cod (Gadus morhua) acclimated to 10, 4 and 0°C were measured at their respective acclimation temperatures, and when acutely exposed to temperature changes: i.e. hearts from 10°C fish cooled to 4°C, and hearts from 4°C fish measured at 10 and 0°C. Intrinsic heart rate (f(H)) decreased from 41 beats min(-1) at 10°C to 33 beats min(-1) at 4°C and 25 beats min(-1) at 0°C. However, this degree of thermal dependency was not reflected in maximal cardiac output (Q(max) values were ~44, ~37 and ~34 ml min(-1) kg(-1) at 10, 4 and 0°C, respectively). Further, cardiac scope showed a slight positive compensation between 4 and 0°C (Q(10)=1.7), and full, if not a slight over compensation between 10 and 4°C (Q(10)=0.9). The maximal performance of hearts exposed to an acute decrease in temperature (i.e. from 10 to 4°C and 4 to 0°C) was comparable to that measured for hearts from 4°C- and 0°C-acclimated fish, respectively. In contrast, 4°C-acclimated hearts significantly out-performed 10°C-acclimated hearts when tested at a common temperature of 10°C (in terms of both Q(max) and power output). Only minimal differences in cardiac function were seen between hearts stimulated with basal (5 nmol l(-1)) versus maximal (200 nmol l(-1)) levels of adrenaline, the effects of which were not temperature dependent. These results: (1) show that maximum performance of the isolated cod heart is not compromised by exposure to cold temperatures; and (2) support data from other studies, which show that, in contrast to salmonids, cod cardiac performance/myocardial contractility is not dependent upon humoral adrenergic stimulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we report a novel steroid-like compound F90363, exhibiting positive inotropy in vivo and in vitro in various cardiac muscle preparations. F90363 is a racemic mixture composed of the stereoisomers (-)-F90926 and (+)-F90927. Only F90927 exerted positive inotropy, while F90926 induced a weak negative inotropy, but only at concentrations 10(3) times higher than F90927 and most likely resulting from an unspecific interaction. The rapid time course of the action of F90927 suggested a direct interaction with a cellular target rather than a genomic alteration. We could identify the L-type Ca2+ current I(Ca(L)) as a main target of F90927, while excluding other components of cardiac Ca2+ signalling as potential contributors. In addition, several other signaling pathways known to lead to positive inotropy (e.g. alpha- and beta-adrenergic stimulation, cAMP pathways) could be excluded as targets of F90927. However, vessel contraction and stiffening of the cardiac muscle at high doses (>30 microM, 0.36 mg kg(-1), respectively) prevent the use of F90927 as a candidate for drug development. Since the compound may still find valuable applications in research, the aim of the present study was to identify the cellular target and the mechanism of inotropy of F90927.