9 resultados para adaptation, endurance, hypertrophy, plasticity

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular immune responses during acute Hepatitis C virus (HCV) and HIV infection are a known correlate of infection outcome. Viral adaptation to these responses via mutation(s) within CD8+ T-cell epitopes allows these viruses to subvert host immune control. This study examined HCV evolution in 21 HCV genotype 1-infected subjects to characterise the level of viral adaptation during acute and early HCV infection. Of the total mutations observed 25% were within described CD8+ T-cell epitopes or at viral adaptation sites. Most mutations were maintained into the chronic phase of HCV infection (75%). The lack of reversion of adaptations and high proportion of silent substitutions suggests that HCV has structural and functional limitations that constrain evolution. These results were compared to the pattern of viral evolution observed in 98 subjects during a similar phase in HIV infection from a previous study. In contrast to HCV, evolution during acute HIV infection is marked by high levels of amino acid change relative to silent substitutions, including a higher proportion of adaptations, likely reflecting strong and continued CD8+ T-cell pressure combined with greater plasticity of the virus. Understanding viral escape dynamics for these two viruses is important for effective T cell vaccine design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological systems have acquired effective adaptive strategies to cope with physiological challenges and to maximize biochemical processes under imposed constraints. Striated muscle tissue demonstrates a remarkable malleability and can adjust its metabolic and contractile makeup in response to alterations in functional demands. Activity-dependent muscle plasticity therefore represents a unique model to investigate the regulatory machinery underlying phenotypic adaptations in a fully differentiated tissue. Adjustments in form and function of mammalian muscle have so far been characterized at a descriptive level, and several major themes have evolved. These imply that mechanical, metabolic and neuronal perturbations in recruited muscle groups relay to the specific processes being activated by the complex physiological stimulus of exercise. The important relationship between the phenotypic stimuli and consequent muscular modifications is reflected by coordinated differences at the transcript level that match structural and functional adjustments in the new training steady state. Permanent alterations of gene expression thus represent a major strategy for the integration of phenotypic stimuli into remodeling of muscle makeup. A unifying theory on the molecular mechanism that connects the single exercise stimulus to the multi-faceted adjustments made after the repeated impact of the muscular stress remains elusive. Recently, master switches have been recognized that sense and transduce the individual physical and chemical perturbations induced by physiological challenges via signaling cascades to downstream gene expression events. Molecular observations on signaling systems also extend the long-known evidence for desensitization of the muscle response to endurance exercise after the repeated impact of the stimulus that occurs with training. Integrative approaches involving the manipulation of single factors and the systematic monitoring of downstream effects at multiple levels would appear to be the ultimate method for pinpointing the mechanism of muscle remodeling. The identification of the basic relationships underlying the malleability of muscle tissue is likely to be of relevance for our understanding of compensatory processes in other tissues, species and organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-intensity concentric (CET) and eccentric (EET) endurance-type training induce specific structural adaptations in skeletal muscle. We evaluated to which extent steady-state adaptations in transcript levels are involved in the compensatory alterations of muscle mitochondria and myofibrils with CET versus EET at a matched metabolic exercise intensity of medicated, stable coronary patients (CAD). Biopsies were obtained from vastus lateralis muscle before and after 8 weeks of CET (n=6) or EET (n=6). Transcript levels for factors involved in mitochondrial biogenesis (PGC-1alpha, Tfam), mitochondrial function (COX-1, COX-4), control of contractile phenotype (MyHC I, IIa, IIx) as well as mechanical stress marker (IGF-I) were quantified using an reverse-transcriptase polymerase chain reaction approach. After 8 weeks of EET, a reduction of the COX-4 mRNA level by 41% and a tendency for a drop in Tfam transcript concentration (-33%, P=0.06) was noted. This down-regulation corresponded to a drop in total mitochondrial volume density. MyHC-IIa transcript levels were specifically decreased after EET, and MyHC-I mRNA showed a trend towards a reduction (P=0.08). Total fiber cross-sectional area was not altered. After CET and EET, the IGF-I mRNA level was significantly increased. The PGC-1alpha significantly correlated with Tfam, and both PGC-1alpha and Tfam significantly correlated with COX-1 and COX-4 mRNAs. Post-hoc analysis identified significant interactions between the concurrent medication and muscular transcript levels as well as fiber size. Our findings support the concept that specific transcriptional adaptations mediate the divergent mitochondrial response of muscle cells to endurance training under different load condition and indicate a mismatch of processes related to muscle hypertrophy in medicated CAD patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of molecular tools enable us to study the mechanisms of muscle plasticity. Ideally, this research is conducted in view of the structural and functional consequences of the exercise-induced changes in gene expression. Muscle cells are able to detect mechanical, metabolic, neuronal and hormonal signals which are transduced over multiple pathways to the muscle genome. Exercise activates many signaling cascades--the individual characteristic of the stress leading to a specific response of a network of signaling pathways. Signaling typically results in the transcription of multiple early genes among those of the well known for and jun family, as well as many other transcription factors. These bind to the promoter regions of downstream genes initiating the structural response of muscle tissue. While signaling is a matter of minutes, early genes are activated over hours leading to a second wave of transcript adjustments of structure genes that can then be effective over days. Repeated exercise sessions thus lead to a concerted accretion of mRNAs which upon translation results in a corresponding protein accretion. On the structural level, the protein accretion manifests itself for instance as an increase in mitochondrial volume upon endurance training or an increase in myofibrillar proteins upon strength training. A single exercise stimulus carries a molecular signature which is typical both for the type of stimulus (i.e. endurance vs. strength) as well as the actual condition of muscle tissue (i.e. untrained vs. trained). Likewise, it is clearly possible to distinguish a molecular signature of an expressional adaptation when hypoxic stress is added to a regular endurance exercise protocol in well-trained endurance athletes. It therefore seems feasible to use molecular tools to judge the properties of an exercise stimulus much earlier and at a finer level than is possible with conventional functional or structural techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE We explored whether altered expression of factors tuning mitochondrial metabolism contributes to muscular adaptations with endurance training in the condition of lowered ambient oxygen concentration (hypoxia) and whether these adaptations relate to oxygen transfer as reflected by subsarcolemmal mitochondria and oxygen metabolism in muscle. METHODS Male volunteers completed 30 bicycle exercise sessions in normoxia or normobaric hypoxia (4,000 m above sea level) at 65% of the respective peak aerobic power output. Myoglobin content, basal oxygen consumption, and re-oxygenation rates upon reperfusion after 8 min of arterial occlusion were measured in vastus muscles by magnetic resonance spectroscopy. Biopsies from vastus lateralis muscle, collected pre and post a single exercise bout, and training, were assessed for levels of transcripts and proteins being associated with mitochondrial metabolism. RESULTS Hypoxia specifically lowered the training-induced expression of markers of respiratory complex II and IV (i.e. SDHA and isoform 1 of COX-4; COX4I1) and preserved fibre cross-sectional area. Concomitantly, trends (p < 0.10) were found for a hypoxia-specific reduction in the basal oxygen consumption rate, and improvements in oxygen repletion, and aerobic performance in hypoxia. Repeated exercise in hypoxia promoted the biogenesis of subsarcolemmal mitochondria and this was co-related to expression of isoform 2 of COX-4 with higher oxygen affinity after single exercise, de-oxygenation time and myoglobin content (r ≥ 0.75). Conversely, expression in COX4I1 with training correlated negatively with changes of subsarcolemmal mitochondria (r < -0.82). CONCLUSION Hypoxia-modulated adjustments of aerobic performance with repeated muscle work are reflected by expressional adaptations within the respiratory chain and modified muscle oxygen metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To ascertain whether reactive oxygen species (ROS) contribute to training-induced adaptation of skeletal muscle, we administered ROS-scavenging antioxidants (AOX; 140 mg/l of ascorbic acid, 12 mg/l of coenzyme Q10 and 1% N-acetyl-cysteine) via drinking water to 16 C57BL/6 mice. Sixteen other mice received unadulterated tap water (CON). One cohort of both groups (CON(EXE) and AOX(EXE) ) was subjected to treadmill exercise for 4 weeks (16-26 m/min, incline of 5°-10°). The other two cohorts (CON(SED) and AOX(SED) ) remained sedentary. In skeletal muscles of the AOX(EXE) mice, GSSG and the expression levels of SOD-1 and PRDX-6 were significantly lower than those in the CON(EXE) mice after training, suggesting disturbance of ROS levels. The peak power related to the body weight and citrate synthase activity was not significantly influenced in mice receiving AOX. Supplementation with AOX significantly altered the mRNA levels of the exercise-sensitive genes HK-II, GLUT-4 and SREBF-1c and the regulator gene PGC-1alpha but not G6PDH, glycogenin, FABP-3, MCAD and CD36 in skeletal muscle. Although the administration of AOX during endurance exercise alters the expression of particular genes of the ROS metabolism, it does not influence peak power or generally shift the metabolism, but it modulates the expression of specific genes of the carbohydrate and lipid metabolism and PGC-1alpha within murine skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM It is unknown how the heart distinguishes various overloads, such as exercise or hypertension, causing either physiological or pathological hypertrophy. We hypothesize that alpha-calcitonin-gene-related peptide (αCGRP), known to be released from contracting skeletal muscles, is key at this remodelling. METHODS The hypertrophic effect of αCGRP was measured in vitro (cultured cardiac myocytes) and in vivo (magnetic resonance imaging) in mice. Exercise performance was assessed by determination of maximum oxygen consumption and time to exhaustion. Cardiac phenotype was defined by transcriptional analysis, cardiac histology and morphometry. Finally, we measured spontaneous activity, body fat content, blood volume, haemoglobin mass and skeletal muscle capillarization and fibre composition. RESULTS While αCGRP exposure yielded larger cultured cardiac myocytes, exercise-induced heart hypertrophy was completely abrogated by treatment with the peptide antagonist CGRP(8-37). Exercise performance was attenuated in αCGRP(-/-) mice or CGRP(8-37) treated wild-type mice but improved in animals with higher density of cardiac CGRP receptors (CLR-tg). Spontaneous activity, body fat content, blood volume, haemoglobin mass, muscle capillarization and fibre composition were unaffected, whereas heart index and ventricular myocyte volume were reduced in αCGRP(-/-) mice and elevated in CLR-tg. Transcriptional changes seen in αCGRP(-/-) (but not CLR-tg) hearts resembled maladaptive cardiac phenotype. CONCLUSIONS Alpha-calcitonin-gene-related peptide released by skeletal muscles during exercise is a hitherto unrecognized effector directing the strained heart into physiological instead of pathological adaptation. Thus, αCGRP agonists might be beneficial in heart failure patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.