14 resultados para acoustic
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Fully controlled liquid injection and flow in hydrophobic polydimethylsiloxane (PDMS) two-dimensional microchannel arrays based on on-chip integrated, low-voltage-driven micropumps are demonstrated. Our architecture exploits the surface-acoustic-wave (SAW) induced counterflow mechanism and the effect of nebulization anisotropies at crossing areas owing to lateral propagating SAWs. We show that by selectively exciting single or multiple SAWs, fluids can be drawn from their reservoirs and moved towards selected positions of a microchannel grid. Splitting of the main liquid flow is also demonstrated by exploiting multiple SAW beams. As a demonstrator, we show simultaneous filling of two orthogonal microchannels. The present results show that SAW micropumps are good candidates for truly integrated on-chip fluidic networks allowing liquid control in arbitrarily shaped two-dimensional microchannel arrays.
Resumo:
A new hearing therapy based on direct acoustic cochlear stimulation was developed for the treatment of severe to profound mixed hearing loss. The device efficacy was validated in an initial clinical trial with four patients. This semi-implantable investigational device consists of an externally worn audio processor, a percutaneous connector, and an implantable microactuator. The actuator is placed in the mastoid bone, right behind the external auditory canal. It generates vibrations that are directly coupled to the inner ear fluids and that, therefore, bypass the external and the middle ear. The system is able to provide an equivalent sound pressure level of 125 dB over the frequency range between 125 and 8000 Hz. The hermetically sealed actuator is designed to provide maximal output power by keeping its dimensions small enough to enable implantation. A network model is used to simulate the dynamic characteristics of the actuator to adjust its transfer function to the characteristics of the middle ear. The geometry of the different actuator components is optimized using finite-element modeling.
Resumo:
We sought to evaluate the relative value of pure tone audiometry (PTA), extended high-frequency audiometry (EFA) and transiently evoked otoacoustic emissions (OAE) and distortion products when monitoring acute acoustic trauma (AAT).
Resumo:
A new implantable hearing system, the direct acoustic cochlear stimulator (DACS) is presented. This system is based on the principle of a power-driven stapes prosthesis and intended for the treatment of severe mixed hearing loss due to advanced otosclerosis. It consists of an implantable electromagnetic transducer, which transfers acoustic energy directly to the inner ear, and an audio processor worn externally behind the implanted ear. The device is implanted using a specially developed retromeatal microsurgical approach. After removal of the stapes, a conventional stapes prosthesis is attached to the transducer and placed in the oval window to allow direct acoustical coupling to the perilymph of the inner ear. In order to restore the natural sound transmission of the ossicular chain, a second stapes prosthesis is placed in parallel to the first one into the oval window and attached to the patient's own incus, as in a conventional stapedectomy. Four patients were implanted with an investigational DACS device. The hearing threshold of the implanted ears before implantation ranged from 78 to 101 dB (air conduction, pure tone average, 0.5-4 kHz) with air-bone gaps of 33-44 dB in the same frequency range. Postoperatively, substantial improvements in sound field thresholds, speech intelligibility as well as in the subjective assessment of everyday situations were found in all patients. Two years after the implantations, monosyllabic word recognition scores in quiet at 75 dB improved by 45-100 percent points when using the DACS. Furthermore, hearing thresholds were already improved by the second stapes prosthesis alone by 14-28 dB (pure tone average 0.5-4 kHz, DACS switched off). No device-related serious medical complications occurred and all patients have continued to use their device on a daily basis for over 2 years. Copyright (c) 2008 S. Karger AG, Basel.
Resumo:
Ultrasonic acoustic emission (UAE) in trees is often related to collapsing water columns in the flow path as a result of tensions that are too strong (cavitation). However, in a decibel (dB) range below that associated with cavitation, a close relationship was found between UAE intensities and stem radius changes. • UAE was continuously recorded on the stems of mature field-grown trees of Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens) at a dry inner-Alpine site in Switzerland over two seasons. The averaged 20-Hz records were related to microclimatic conditions in air and soil, sap-flow rates and stem-radius fluctuations de-trended for growth (ΔW). • Within a low-dB range (27 ± 1 dB), UAE regularly increased and decreased in a diurnal rhythm in parallel with ΔW on cloudy days and at night. These low-dB emissions were interrupted by UAE abruptly switching between the low-dB range and a high-dB range (36 ± 1 dB) on clear, sunny days, corresponding to the widely supported interpretation of UAE as sound from cavitations. • It is hypothesized that the low-dB signals in drought-stressed trees are caused by respiration and/or cambial growth as these physiological activities are tissue water-content dependent and have been shown to produce courses of CO2 efflux similar to our courses of ΔW and low-dB UAE.
Resumo:
OBJECTIVE To confirm the clinical efficacy and safety of a direct acoustic cochlear implant. STUDY DESIGN Prospective multicenter study. SETTING The study was performed at 3 university hospitals in Europe (Germany, The Netherlands, and Switzerland). PATIENTS Fifteen patients with severe-to-profound mixed hearing loss because of otosclerosis or previous failed stapes surgery. INTERVENTION Implantation with a Codacs direct acoustic cochlear implant investigational device (ID) combined with a stapedotomy with a conventional stapes prosthesis MAIN OUTCOME MEASURES Preoperative and postoperative (3 months after activation of the investigational direct acoustic cochlear implant) audiometric evaluation measuring conventional pure tone and speech audiometry, tympanometry, aided thresholds in sound field and hearing difficulty by the Abbreviated Profile of Hearing Aid Benefit questionnaire. RESULTS The preoperative and postoperative air and bone conduction thresholds did not change significantly by the implantation with the investigational Direct Acoustic Cochlear Implant. The mean sound field thresholds (0.25-8 kHz) improved significantly by 48 dB. The word recognition scores (WRS) at 50, 65, and 80 dB SPL improved significantly by 30.4%, 75%, and 78.2%, respectively, after implantation with the investigational direct acoustic cochlear implant compared with the preoperative unaided condition. The difficulty in hearing, measured by the Abbreviated Profile of Hearing Aid Benefit, decreased by 27% after implantation with the investigational direct acoustic cochlear implant. CONCLUSION Patients with moderate-to-severe mixed hearing loss because of otosclerosis can benefit substantially using the Codacs investigational device.
Resumo:
Abstract. Ancient Lake Ohrid is a steep-sided, oligotrophic, karst lake that was tectonically formed most likely within the Pliocene and often referred to as a hotspot of endemic biodiversity. This study aims on tracing significant lake level fluctuations at Lake Ohrid using high-resolution acoustic data in combination with lithological, geochemical, and chronological information from two sediment cores recovered from sub-aquatic terrace levels at ca. 32 and 60m water depth. According to our data, significant lake level fluctuations with prominent lowstands of ca. 60 and 35m below the present water level occurred during Marine Isotope Stage (MIS) 6 and MIS 5, respectively. The effect of these lowstands on biodiversity in most coastal parts of the lake is negligible, due to only small changes in lake surface area, coastline, and habitat. In contrast, biodiversity in shallower areas was more severely affected due to disconnection of today sublacustrine springs from the main water body. Multichannel seismic data from deeper parts of the lake clearly image several clinoform structures stacked on top of each other. These stacked clinoforms indicate significantly lower lake levels prior to MIS 6 and a stepwise rise of water level with intermittent stillstands since its existence as water-filled body, which might have caused enhanced expansion of endemic species within Lake Ohrid.
Resumo:
Objectives: We compare the dose parameters between 3 different radiosurgery delivery techniques which may have an impact on cochlea function. Methods: Five patients with unilateral vestibular schwannoma (VS) were selected for this study. Planning procedure was carried out using the BrainLAB® iPlan planning system v. 4.5. For each patient three different planning techniques were used: dynamic arc (DA) with 5 arcs per plan, hybrid arc (HA) with 5 arcs per plan and IMRT with 8 fields per plan. For each technique, two plans were generated with different methods: with the first method (PTV coverage) it was the goal to fully cover the PTV with at least 12 Gy (normalization: 12 Gy covered 99% of the PTV) and with the second method (cochlea sparing) it was the goal to spare the cochlea (normalization: 12 Gy covers 50% of the PTV/V4Gy of cochlea lower than 1%). Plan evaluation was done considering target volume and coverage (conformity and homogeneity) and OAR constraints (mean (Dmean) and maximum dose (Dmax) to cochlea, Dmax to brainstem and cochlea). The total number of monitor units (MU) was analyzed. Results: The median tumor volume was 0.95 cm³ (range, 0.86-3 cm³). The median PTV was 1.44 cm³ (range, 1-3.5 cm³). The median distance between the tumor and the cochlea's modiulus was 2.7 mm (range, 1.8-6.3 mm). For the PTV coverage method, when we compared the cochlear dose in VS patients planned with DA, HA and IMRT, there were no significant differences in Dmax (p = 0.872) and in Dmean (p= 0.860). We found a significant correlation (p< 0.05) between the target volume and the cochlear Dmean for all plans with Pearson's coefficient correlation of 0.90, 0.92 and 0.94 for the DA, HA and IMRT techniques, respectively. For the cochlea sparing method, when we compared the cochlear dose in VS patients planned with DA, HA and IMRT, there were no significant differences in Dmax (p = 0.310) and in Dmean (p= 0.275). However, in this group the V4Gy of the ipsilateral cochlea represents less than 1%. When using the HA or IMRT technique, the homogeneity and conformity in the PTV, but also the number of MUs were increased in comparison to the DA technique. Conclusion: VS tumors that extend distally into the IAC had an equivalent sparing of cochlea with DA approach compared with the HA and IMRT techniques. Disclosure: No significant relationships.
Resumo:
Acoustic signatures are common components of avian vocalizations and are important for the recognition of individuals and groups. The proximate mechanisms by which these signatures develop are poorly understood, however. The development of acoustic signatures in nestling birds is of particular interest, because high rates of extra-pair paternity or egg dumping can cause nestlings to be unrelated to at least one of the adults that are caring for them. In such cases, nestlings might conceal their genetic origins, by developing acoustic signatures through environmental rather than genetic mechanisms. In a cross-fostering experiment with tree swallows Tachycineta bicolor, we investigated whether brood signatures of nestlings that were about to fledge were attributable to their genetic/maternal origins or to their rearing environment. We found that the calls of cross-fostered nestlings did not vary based on their genetic/maternal origin, but did show some variation based on their rearing environment. Control nestlings that were not swapped, however, showed stronger brood signatures than either experimental group, suggesting that acoustic signatures develop through an interaction between rearing environment and genetic/maternal effects.
Resumo:
We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re D = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.