68 resultados para accuracy analysis
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Computer assisted orthopaedic surgery (CAOS) technology has recently been introduced to overcome problems resulting from acetabular component malpositioning in total hip arthroplasty. Available navigation modules can conceptually be categorized as computer tomography (CT) based, fluoroscopy based, or image-free. The current study presents a comprehensive accuracy analysis on the computer assisted placement accuracy of acetabular cups. It combines analyses using mathematical approaches, in vitro testing environments, and an in vivo clinical trial. A hybrid navigation approach combining image-free with fluoroscopic technology was chosen as the best compromise to CT-based systems. It introduces pointer-based digitization for easily assessable points and bi-planar fluoroscopy for deep-seated landmarks. From the in vitro data maximum deviations were found to be 3.6 degrees for inclination and 3.8 degrees for anteversion relative to a pre-defined test position. The maximum difference between intraoperatively calculated cup inclination and anteversion with the postoperatively measured position was 4 degrees and 5 degrees, respectively. These data coincide with worst cases scenario predictions applying a statistical simulation model. The proper use of navigation technology can reduce variability of cup placement well within the surgical safe zone. Surgeons have to concentrate on a variety of error sources during the procedure, which may explain the reported strong learning curves for CAOS technologies.
Resumo:
Studies of diagnostic accuracy require more sophisticated methods for their meta-analysis than studies of therapeutic interventions. A number of different, and apparently divergent, methods for meta-analysis of diagnostic studies have been proposed, including two alternative approaches that are statistically rigorous and allow for between-study variability: the hierarchical summary receiver operating characteristic (ROC) model (Rutter and Gatsonis, 2001) and bivariate random-effects meta-analysis (van Houwelingen and others, 1993), (van Houwelingen and others, 2002), (Reitsma and others, 2005). We show that these two models are very closely related, and define the circumstances in which they are identical. We discuss the different forms of summary model output suggested by the two approaches, including summary ROC curves, summary points, confidence regions, and prediction regions.
Resumo:
BACKGROUND: This study investigated the role of a negative FAST in the diagnostic and therapeutic algorithm of multiply injured patients with liver or splenic lesions. METHODS: A retrospective analysis of 226 multiply injured patients with liver or splenic lesions treated at Bern University Hospital, Switzerland. RESULTS: FAST failed to detect free fluid or organ lesions in 45 of 226 patients with spleen or liver injuries (sensitivity 80.1%). Overall specificity was 99.5%. The positive and negative predictive values were 99.4% and 83.3%. The overall likelihood ratios for a positive and negative FAST were 160.2 and 0.2. Grade III-V organ lesions were detected more frequently than grade I and II lesions. Without the additional diagnostic accuracy of a CT scan, the mean ISS of the FAST-false-negative patients would be significantly underestimated and 7 previously unsuspected intra-abdominal injuries would have been missed. CONCLUSION: FAST is an expedient tool for the primary assessment of polytraumatized patients to rule out high grade intra-abdominal injuries. However, the low overall diagnostic sensitivity of FAST may lead to underestimated injury patterns and delayed complications may occur. Hence, in hemodynamically stable patients with abdominal trauma, an early CT scan should be considered and one must be aware of the potential shortcomings of a "negative FAST".
Resumo:
OBJECTIVE: Meta-analysis of studies of the accuracy of diagnostic tests currently uses a variety of methods. Statistically rigorous hierarchical models require expertise and sophisticated software. We assessed whether any of the simpler methods can in practice give adequately accurate and reliable results. STUDY DESIGN AND SETTING: We reviewed six methods for meta-analysis of diagnostic accuracy: four simple commonly used methods (simple pooling, separate random-effects meta-analyses of sensitivity and specificity, separate meta-analyses of positive and negative likelihood ratios, and the Littenberg-Moses summary receiver operating characteristic [ROC] curve) and two more statistically rigorous approaches using hierarchical models (bivariate random-effects meta-analysis and hierarchical summary ROC curve analysis). We applied the methods to data from a sample of eight systematic reviews chosen to illustrate a variety of patterns of results. RESULTS: In each meta-analysis, there was substantial heterogeneity between the results of different studies. Simple pooling of results gave misleading summary estimates of sensitivity and specificity in some meta-analyses, and the Littenberg-Moses method produced summary ROC curves that diverged from those produced by more rigorous methods in some situations. CONCLUSION: The closely related hierarchical summary ROC curve or bivariate models should be used as the standard method for meta-analysis of diagnostic accuracy.
Resumo:
BACKGROUND Neuronavigation has become an intrinsic part of preoperative surgical planning and surgical procedures. However, many surgeons have the impression that accuracy decreases during surgery. OBJECTIVE To quantify the decrease of neuronavigation accuracy and identify possible origins, we performed a retrospective quality-control study. METHODS Between April and July 2011, a neuronavigation system was used in conjunction with a specially prepared head holder in 55 consecutive patients. Two different neuronavigation systems were investigated separately. Coregistration was performed with laser-surface matching, paired-point matching using skin fiducials, anatomic landmarks, or bone screws. The initial target registration error (TRE1) was measured using the nasion as the anatomic landmark. Then, after draping and during surgery, the accuracy was checked at predefined procedural landmark steps (Mayfield measurement point and bone measurement point), and deviations were recorded. RESULTS After initial coregistration, the mean (SD) TRE1 was 2.9 (3.3) mm. The TRE1 was significantly dependent on patient positioning, lesion localization, type of neuroimaging, and coregistration method. The following procedures decreased neuronavigation accuracy: attachment of surgical drapes (DTRE2 = 2.7 [1.7] mm), skin retractor attachment (DTRE3 = 1.2 [1.0] mm), craniotomy (DTRE3 = 1.0 [1.4] mm), and Halo ring installation (DTRE3 = 0.5 [0.5] mm). Surgery duration was a significant factor also; the overall DTRE was 1.3 [1.5] mm after 30 minutes and increased to 4.4 [1.8] mm after 5.5 hours of surgery. CONCLUSION After registration, there is an ongoing loss of neuronavigation accuracy. The major factors were draping, attachment of skin retractors, and duration of surgery. Surgeons should be aware of this silent loss of accuracy when using neuronavigation.
Resumo:
AIMS: We conducted a meta-analysis to evaluate the accuracy of quantitative stress myocardial contrast echocardiography (MCE) in coronary artery disease (CAD). METHODS AND RESULTS: Database search was performed through January 2008. We included studies evaluating accuracy of quantitative stress MCE for detection of CAD compared with coronary angiography or single-photon emission computed tomography (SPECT) and measuring reserve parameters of A, beta, and Abeta. Data from studies were verified and supplemented by the authors of each study. Using random effects meta-analysis, we estimated weighted mean difference (WMD), likelihood ratios (LRs), diagnostic odds ratios (DORs), and summary area under curve (AUC), all with 95% confidence interval (CI). Of 1443 studies, 13 including 627 patients (age range, 38-75 years) and comparing MCE with angiography (n = 10), SPECT (n = 1), or both (n = 2) were eligible. WMD (95% CI) were significantly less in CAD group than no-CAD group: 0.12 (0.06-0.18) (P < 0.001), 1.38 (1.28-1.52) (P < 0.001), and 1.47 (1.18-1.76) (P < 0.001) for A, beta, and Abeta reserves, respectively. Pooled LRs for positive test were 1.33 (1.13-1.57), 3.76 (2.43-5.80), and 3.64 (2.87-4.78) and LRs for negative test were 0.68 (0.55-0.83), 0.30 (0.24-0.38), and 0.27 (0.22-0.34) for A, beta, and Abeta reserves, respectively. Pooled DORs were 2.09 (1.42-3.07), 15.11 (7.90-28.91), and 14.73 (9.61-22.57) and AUCs were 0.637 (0.594-0.677), 0.851 (0.828-0.872), and 0.859 (0.842-0.750) for A, beta, and Abeta reserves, respectively. CONCLUSION: Evidence supports the use of quantitative MCE as a non-invasive test for detection of CAD. Standardizing MCE quantification analysis and adherence to reporting standards for diagnostic tests could enhance the quality of evidence in this field.
Resumo:
BACKGROUND AND AIMS: Internet-based surveys provide a potentially important tool for Inflammatory Bowel Disease (IBD) research. The advantages include low cost, large numbers of participants, rapid study completion and less extensive infrastructure than traditional methods. The aim was to determine the accuracy of patient self-reporting in internet-based IBD research and identify predictors of greater reliability. METHODS: 197 patients from a tertiary care center answered an online survey concerning personal medical history and an evaluation of disease specific knowledge. Self-reported medical details were compared with data abstracted from medical records. Agreement was assessed by kappa (κ) statistics. RESULTS: Participants responded correctly with excellent agreement (κ=0.96-0.97) on subtype of IBD and history of surgery. The agreement was also excellent for colectomy (κ=0.88) and small bowel resection (κ=0.91), moderate for abscesses and fistulas (κ=0.60 and 0.63), but poor regarding partial colectomy (κ=0.39). Time since last colonoscopy was self-reported with better agreement (κ=0.84) than disease activity. For disease location/extent, moderate agreements at κ=69% and 64% were observed for patients with Crohn's disease and ulcerative colitis, respectively. Subjects who scored higher than the average in the IBD knowledge assessment were significantly more accurate about disease location than their complementary group (74% vs. 59%, p=0.02). CONCLUSION: This study demonstrates that IBD patients accurately report their medical history regarding type of disease and surgical procedures. More detailed medical information is less reliably reported. Disease knowledge assessment may help in identifying the most accurate individuals and could therefore serve as validity criteria. Internet-based surveys are feasible with high reliability about basic disease features only. However, the participants in this study were engaged at a tertiary center, which potentially leads to a bias and compromises generalization to an unfiltered patient group.
Resumo:
An accurate detection of individuals at clinical high risk (CHR) for psychosis is a prerequisite for effective preventive interventions. Several psychometric interviews are available, but their prognostic accuracy is unknown. We conducted a prognostic accuracy meta-analysis of psychometric interviews used to examine referrals to high risk services. The index test was an established CHR psychometric instrument used to identify subjects with and without CHR (CHR+ and CHR-). The reference index was psychosis onset over time in both CHR+ and CHR- subjects. Data were analyzed with MIDAS (STATA13). Area under the curve (AUC), summary receiver operating characteristic curves, quality assessment, likelihood ratios, Fagan's nomogram and probability modified plots were computed. Eleven independent studies were included, with a total of 2,519 help-seeking, predominately adult subjects (CHR+: N=1,359; CHR-: N=1,160) referred to high risk services. The mean follow-up duration was 38 months. The AUC was excellent (0.90; 95% CI: 0.87-0.93), and comparable to other tests in preventive medicine, suggesting clinical utility in subjects referred to high risk services. Meta-regression analyses revealed an effect for exposure to antipsychotics and no effects for type of instrument, age, gender, follow-up time, sample size, quality assessment, proportion of CHR+ subjects in the total sample. Fagan's nomogram indicated a low positive predictive value (5.74%) in the general non-help-seeking population. Albeit the clear need to further improve prediction of psychosis, these findings support the use of psychometric prognostic interviews for CHR as clinical tools for an indicated prevention in subjects seeking help at high risk services worldwide.
Resumo:
To prospectively evaluate a 3-dimensional spoiled gradient-dual-echo (3D SPGR-DE) magnetic resonance imaging (MRI) sequence for the qualitative and quantitative analysis of liver fat content (LFC) in patients with the suspicion of fatty liver disease using histopathology as the standard of reference.
Resumo:
For crime scene investigation in cases of homicide, the pattern of bloodstains at the incident site is of critical importance. The morphology of the bloodstain pattern serves to determine the approximate blood source locations, the minimum number of blows and the positioning of the victim. In the present work, the benefits of the three-dimensional bloodstain pattern analysis, including the ballistic approximation of the trajectories of the blood drops, will be demonstrated using two illustrative cases. The crime scenes were documented in 3D, using the non-contact methods digital photogrammetry, tachymetry and laser scanning. Accurate, true-to-scale 3D models of the crime scenes, including the bloodstain pattern and the traces, were created. For the determination of the areas of origin of the bloodstain pattern, the trajectories of up to 200 well-defined bloodstains were analysed in CAD and photogrammetry software. The ballistic determination of the trajectories was performed using ballistics software. The advantages of this method are the short preparation time on site, the non-contact measurement of the bloodstains and the high accuracy of the bloodstain analysis. It should be expected that this method delivers accurate results regarding the number and position of the areas of origin of bloodstains, in particular the vertical component is determined more precisely than using conventional methods. In both cases relevant forensic conclusions regarding the course of events were enabled by the ballistic bloodstain pattern analysis.
Resumo:
The interest in automatic volume meshing for finite element analysis (FEA) has grown more since the appearance of microfocus CT (μCT), due to its high resolution, which allows for the assessment of mechanical behaviour at a high precision. Nevertheless, the basic meshing approach of generating one hexahedron per voxel produces jagged edges. To prevent this effect, smoothing algorithms have been introduced to enhance the topology of the mesh. However, whether smoothing also improves the accuracy of voxel-based meshes in clinical applications is still under question. There is a trade-off between smoothing and quality of elements in the mesh. Distorted elements may be produced by excessive smoothing and reduce accuracy of the mesh. In the present work, influence of smoothing on the accuracy of voxel-based meshes in micro-FE was assessed. An accurate 3D model of a trabecular structure with known apparent mechanical properties was used as a reference model. Virtual CT scans of this reference model (with resolutions of 16, 32 and 64 μm) were then created and used to build voxel-based meshes of the microarchitecture. Effects of smoothing on the apparent mechanical properties of the voxel-based meshes as compared to the reference model were evaluated. Apparent Young’s moduli of the smooth voxel-based mesh were significantly closer to those of the reference model for the 16 and 32 μm resolutions. Improvements were not significant for the 64 μm, due to loss of trabecular connectivity in the model. This study shows that smoothing offers a real benefit to voxel-based meshes used in micro-FE. It might also broaden voxel-based meshing to other biomechanical domains where it was not used previously due to lack of accuracy. As an example, this work will be used in the framework of the European project ContraCancrum, which aims at providing a patient-specific simulation of tumour development in brain and lungs for oncologists. For this type of clinical application, such a fast, automatic, and accurate generation of the mesh is of great benefit.
Resumo:
Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.
Resumo:
Surgical navigation might increase the safety of osteochondroplasty procedures in patients with femoroacetabular impingement. Feasibility and accuracy of navigation of a surgical reaming device were assessed. Three-dimensional models of 18 identical sawbone femora and 5 cadaver hips were created. Custom software was used to plan and perform repeated computer-assisted osteochondroplasty procedures using a navigated burr. Postoperative 3-dimensional models were created and compared with the preoperative models. A Bland-Altmann analysis assessing α angle and offset ratio accuracy showed even distribution along the zero line with narrow confidence intervals. No differences in α angle and offset ratio accuracy (P = 0.486 and P = 0.2) were detected between both observers. Planning and conduction of navigated osteochondroplasty using a surgical reaming device is feasible and accurate.