3 resultados para abstract user interfaces
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
User interfaces are key properties of Business-to-Consumer (B2C) systems, and Web-based reservation systems are an important class of B2C systems. In this paper we show that these systems use a surprisingly broad spectrum of different approaches to handling temporal data in their Web inter faces. Based on these observations and on a literature analysis we develop a Morphological Box to present the main options for handling temporal data and give examples. The results indicate that the present state of developing and maintaining B2C systems has not been much influenced by modern Web Engi neering concepts and that there is considerable potential for improvement.
Resumo:
For smart cities applications, a key requirement is to disseminate data collected from both scalar and multimedia wireless sensor networks to thousands of end-users. Furthermore, the information must be delivered to non-specialist users in a simple, intuitive and transparent manner. In this context, we present Sensor4Cities, a user-friendly tool that enables data dissemination to large audiences, by using using social networks, or/and web pages. The user can request and receive monitored information by using social networks, e.g., Twitter and Facebook, due to their popularity, user-friendly interfaces and easy dissemination. Additionally, the user can collect or share information from smart cities services, by using web pages, which also include a mobile version for smartphones. Finally, the tool could be configured to periodically monitor the environmental conditions, specific behaviors or abnormal events, and notify users in an asynchronous manner. Sensor4Cities improves the data delivery for individuals or groups of users of smart cities applications and encourages the development of new user-friendly services.
Resumo:
Abstract. During the last decade mobile communications increasingly became part of people's daily routine. Such usage raises new challenges regarding devices' battery lifetime management when using most popular wireless access technologies, such as IEEE 802.11. This paper investigates the energy/delay trade-off of using an end-user driven power saving approach, when compared with the standard IEEE 802.11 power saving algorithms. The assessment was conducted in a real testbed using an Android mobile phone and high-precision energy measurement hardware. The results show clear energy benefits of employing user-driven power saving techniques, when compared with other standard approaches.