28 resultados para Zebra danio

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual recognition systems require the sender to be individually distinctive and the receiver to be able to perceive differences between individuals and react accordingly. Many studies have demonstrated that acoustic signals of almost any species contain individualized information. However, fewer studies have tested experimentally if those signals are used for individual recognition by potential receivers. While laboratory studies using zebra finches have shown that fledglings recognize their parents by their “distance call”, mutual recognition using the same call type has not been demonstrated yet. In a laboratory study with zebra finches, we first quantified between-individual acoustic variation in distance calls of fledglings. In a second step, we tested recognition of fledgling calls by parents using playback experiments. With a discriminant function analysis, we show that individuals are highly distinctive and most measured parameters show very high potential to encode for individuality. The response pattern of zebra finch parents shows that they do react to calls of fledglings, however they do not distinguish between own and unfamiliar offspring, despite individual distinctiveness. This finding is interesting in light of the observation of a high percentage of misdirected feedings in our communal breeding aviaries. Our results demonstrate the importance of adopting a receiver's perspective and suggest that variation in fledgling contact calls might not be used in individual recognition of offspring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information about the welfare and husbandry of pet and laboratory fish is scarce although millions of fish are sold in pet shops and used in laboratory research every year. Inadequate housing conditions can cause behavioural problems also in fish since they are complex animals with sophisticated behaviour. In this study, we investigated the influence of environmental complexity on compartment preference and behaviour in zebrafish (Danio rerio) and checker barbs (Puntius oligolepis). For the preference test, large aquaria were divided by two semi-transparent walls of Plexiglas into an empty compartment, a structured compartment enriched with plants and clay pots, and a smaller compartment in-between, where food was provided. For observation, the empty and structured compartments were divided into six zones of similar size by defining three vertical layers and two horizontal areas (back vs. front area). Seven groups of six to nine zebrafish and seven groups of seven or eight checker barbs were observed on four days each (within a time period of ten days) to assess compartment use and activity, and to assess behavioural diversity and use of zones within compartments. Both zebrafish and checker barbs showed a significant preference for the structured compartment. Nevertheless, in neither species did behavioural diversity differ between the empty and structured compartment. Zebrafish used all zones in both compartments to the same extent. Checker barbs, however, used the structured compartment more evenly than the empty compartment, where they mainly used the lower and middle zones. These results suggest that zebrafish and checker barbs have a preference for complex environments. Furthermore, they indicate that the behavioural and ecological needs of fish may vary depending on species, and recommendations for husbandry should be specified at species level. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many endocrine-disrupting chemicals act via estrogen receptor (ER) or aryl hydrocarbon receptor (AhR). To investigate the interference between ER and AhR, we studied the effects of 17beta-estradiol (E2) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of zebra fish cyp19a (zfcyp19a) and cyp19b (zfcyp19b) genes, encoding aromatase P450, an important steroidogenic enzyme. In vivo (mRNA quantification in exposed zebra fish larvae) and in vitro (activity of zfcyp19-luciferase reporter genes in cell cultures in response to chemicals and zebra fish transcription factors) assays were used. None of the treatments affected zfcyp19a, excluding the slight upregulation by E2 observed in vitro. Strong upregulation of zfcyp19b by E2 in both assays was downregulated by TCDD. This effect could be rescued by the addition of an AhR antagonist. Antiestrogenic effect of TCDD on the zfcyp19b expression in the brain was also observed on the protein level, assessed by immunohistochemistry. TCDD alone did not affect zfcyp19b expression in vivo or promoter activity in the presence of zebra fish AhR2 and AhR nuclear translocator 2b (ARNT2b) in vitro. However, in the presence of zebra fish ERalpha, AhR2, and ARNT2b, TCDD led to a slight upregulation of promoter activity, which was eliminated by either an ER or AhR antagonist. Studies with mutated reporter gene constructs indicated that both mechanisms of TCDD action in vitro were independent of dioxin-responsive elements (DREs) predicted in the promoter. This study shows the usefulness of in vivo zebra fish larvae and in vitro zfcyp19b reporter gene assays for evaluation of estrogenic chemical actions, provides data on the functionality of DREs predicted in zfcyp19 promoters and shows the effects of cross talk between ER and AhR on zfcyp19b expression. The antiestrogenic effect of TCDD demonstrated raises further concerns about the neuroendocrine effects of AhR ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial or full life-cycle tests are needed to assess the potential of endocrine-disrupting compounds (EDCs) to adversely affect development and reproduction of fish. Small fish species such as zebrafish, Danio rerio, are under consideration as model organisms for appropriate test protocols. The present study examines how reproductive effects resulting from exposure of zebrafish to the synthetic estrogen 17alpha-ethinylestradiol (EE2) vary with concentration (0.05 to 10 ng EE2 L(-1), nominal), and with timing/duration of exposure (partial life-cycle, full life-cycle, and two-generation exposure). Partial life-cycle exposure of the parental (F1) generation until completion of gonad differentiation (0-75 d postfertilization, dpf) impaired juvenile growth, time to sexual maturity, adult fecundity (egg production/female/day), and adult fertilization success at 1.1 ng EE2 L(-1) and higher. Lifelong exposure of the F1 generation until 177 dpf resulted in lowest observed effect concentrations (LOECs) for time to sexual maturity, fecundity, and fertilization success identical to those of the developmental test (0-75 dpf), but the slope of the concentration-response curve was steeper. Reproduction of zebrafish was completely inhibited at 9.3 ng EE2 L(-1), and this was essentially irreversible as a 3-mo depuration restored fertilization success to only a very low rate. Accordingly, elevated endogenous vitellogenin (VTG) synthesis and degenerative changes in gonad morphology persisted in depurated zebrafish. Full life-cycle exposure of the filial (F2) generation until 162 dpf impaired growth, delayed onset of spawning and reduced fecundity and fertilization success at 2.0 ng EE2 L(-1). In conclusion, results show that the impact of estrogenic agents on zebrafish sexual development and reproductive functions as well as the reversibility of effects, varies with exposure concentration (reversibility at < or = 1.1 ng EE2 L(-1) and irreversibility at 9.3 ng EE2 L(-1)), and between partial and full life-cycle exposure (exposure to 10 ng EE2 L(-1) during critical period exerted no permanent effect on sexual differentiation, but life-cycle exposure did).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meprins are members of the astacin family of metalloproteases expressed in epithelial tissues, intestinal leukocytes and certain cancer cells. In mammals, there are two homologous subunits, which form complex glycosylated disulfide-bonded homo- and heterooligomers. Both human meprin alpha and meprin beta cleave several basement membrane components, suggesting a role in epithelial differentiation and cell migration. There is also evidence that meprin beta is involved in immune defence owing to its capability of activating interleukin-1beta and the diminished mobility of intestinal leukocytes in meprin beta-knockout mice. Here we show for the first time by reverse transcription PCR, immunoblotting and immunofluorescence analyses that meprins are expressed not only in mammals, but also in the zebrafish Danio rerio. In contrast to the human, mouse and rat enzymes, zebrafish meprins are encoded by three genes, corresponding to two homologous alpha subunits and one beta subunit. Observations at both the mRNA and protein level indicate a broad distribution of meprins in zebrafish. However, there are strikingly different expression patterns of the three subunits, which is consistent with meprin expression in mammals. Hence, D. rerio appears to be a suitable model to gain insight into the basic physiological functions of meprin metalloproteases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogens are known to play a role in both reproductive and non-reproductive functions in mammals. Estrogens and their receptors are involved in the development of the central nervous system (brain development, neuronal survival and differentiation) as well as in the development of the peripheral nervous system (sensory-motor behaviors). In order to decipher possible functions of estrogens in early development of the zebrafish sensory system, we investigated the role of estrogen receptor beta(2) (ERbeta(2)) by using a morpholino (MO) approach blocking erbeta(2) RNA translation. We further investigated the development of lateral line organs by cell-specific labeling, which revealed a disrupted development of neuromasts in morphants. The supporting cells developed and migrated normally. Sensory hair cells, however, were absent in morphants' neuromasts. Microarray analysis and subsequent in situ hybridizations indicated an aberrant activation of the Notch signaling pathway in ERbeta(2) morphants. We conclude that signaling via ERbeta(2) is essential for hair cell development and may involve an interaction with the Notch signaling pathway during cell fate decision in the neuromast maturation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endocrine-disrupting compounds (EDCs) are widespread in the aquatic environment and can cause alterations in development, physiological homeostasis and health of vertebrates. Zebrafish, Danio rerio, has been suggested as a model species to identify targets as well as modes of EDC action. In fact, zebrafish has been found useful in EDC screening, in EDC effects assessment and in studying targets and mechanisms of EDC action. Since many of the environmental EDCs interfere with the sex steroid system of vertebrates, most EDC studies with zebrafish addressed disruption of sexual differentiation and reproduction. However, other targets of EDCs action must not be overlooked. For using a species as a toxicological model, a good knowledge of the biological traits of this species is a pre-requisite for the rational design of test protocols and endpoints as well as for the interpretation and extrapolation of the toxicological findings. Due to the genomic resources available for zebrafish and the long experience with zebrafish in toxicity testing, it is easily possible to establish molecular endpoints for EDC effects assessment. Additionally, the zebrafish model offers a number of technical advantages including ease and cost of maintenance, rapid development, high fecundity, optical transparency of embryos supporting phenotypic screening, existence of many mutant strains, or amenability for both forward and reverse genetics. To date, the zebrafish has been mainly used to identify molecular targets of EDC action and to determine effect thresholds, while the potential of this model species to study immediate and delayed physiological consequences of molecular interactions has been instrumentalized only partly. One factor that may limit the exploitation of this potential is the still rather fragmentary knowledge of basic biological and endocrine traits of zebrafish. Information on species-specific features in endocrine processes and biological properties, however, need to be considered in establishing EDC test protocols using zebrafish, in extrapolating findings from zebrafish to other vertebrate species, and in understanding how EDC-induced gene expression changes translate into disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquatic toxicology is facing the challenge to assess the impact of complex mixtures of compounds on diverse biological endpoints. So far, ecotoxicology focuses mainly on apical endpoints such as growth, lethality and reproduction, but does not consider sublethal toxic effects that may indirectly cause ecological effects. One such sublethal effect is toxicant-induced impairment of neurosensory functions which will affect important behavioural traits of exposed organisms. Here, we critically review the mechanosensory lateral line (LL) system of zebrafish as a model to screen for chemical effects on neurosensory function of fish in particular and vertebrates in general. The LL system consists of so-called neuromasts, composed of centrally located sensory hair cells, and surrounding supporting cells. The function of neuromasts is the detection of water movements that is essential for the fish's ability to detect prey, to escape predator, to socially interact or to show rheotactic behaviour. Recent advances in the study of these organs provided researchers with a broad area of molecular tools for easy and rapid detection of neuromasts dysfunction and/or disturbed development. Further, genes involved in neuromasts differentiation have been identified using auditory/mechanosensory mutants and morphants. A number of environmental toxicants including metals and pharmaceuticals have been shown to affect neuromasts development and/or function. The use of the LL organ for toxicological studies offers the advantage to integrate the available profound knowledge on developmental biology of the neuromasts with the study of chemical toxicity. This combination may provide a powerful tool in environmental risk assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult zebrafish Danio rerio originating from one stock used as control animals in a toxicological study were examined histopathologically for the occurrence of spontaneous lesions in the gonads. While no histopathological changes were seen in the testes, the ovaries showed lesions consisting mainly of acute granulomatous inflammation with increased atresia and the presence of egg debris in the ovarian parenchyma and in the oviduct. Since infectious agents could not be detected and the fish were not exposed to toxicants, we consider these lesions as spontaneous alterations of the ovaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the developmental toxicity of the polycyclic aromatic hydrocarbons (PAHs) 11H-benzo(b)fluorene (BBF) and 4-azapyrene (AP) in comparison to the known teratogen retene. Developmental toxicity assays were performed in zebrafish embryos exposed for 120 h. BBF and retene induced a similar dioxin-like phenotype, whereas AP showed distinct effects, particularly craniofacial malformations. Microarray analysis revealed that for BBF and retene, drug metabolism pathways were induced, which were confirmed by subsequent studies of cyp1a gene expression. For AP, microarray analysis revealed the regulation of genes involved in retinoid metabolism and hematological functions. Studies with a panel of CALUX((R)) bioassays to screen for endocrine disrupting activity of the compounds also revealed novel antagonistic effects of BBF and retene on androgen and progesterone receptors. Classification analysis revealed distinct gene expression profiles for both individual and combined PAH exposure. This study highlights the potential health risk of non priority PAHs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effects of the androgenic endocrine disruptor 17β-trenbolone on the sexual development of zebrafish (Danio rerio) with special emphasis on the question of whether adverse outcomes of developmental exposure are reversible or persistent. An exposure scenario including a recovery phase was chosen to assess the potential reversibility of androgenic effects. Zebrafish were exposed to environmentally relevant concentrations of 17β-trenbolone (1 ng/L-30 ng/L) from fertilization until completion of gonad sexual differentiation (60 d posthatch). Thereafter, exposure was either followed by 40 d of recovery in clean water or continued until 100 d posthatch, the age when zebrafish start being able to reproduce. Fish exposed for 100 d to 10 ng/L or 30 ng/L 17β-trenbolone were masculinized at different biological effect levels, as evidenced from a concentration-dependent shift of the sex ratio toward males as well as a significantly increased maturity of testes. Gonad morphological masculinization occurred in parallel with decreased vitellogenin concentrations in both sexes. Changes of brain aromatase (cyp19b) mRNA expression showed no consistent trend with respect to either exposure duration or concentration. Gonad morphological masculinization as well as the decrease of vitellogenin persisted after depuration over 40 d in clean water. This lack of recovery suggests that androgenic effects on sexual development of zebrafish are irreversible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1-10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential and adaptive flexibility of population dynamic P-systems (PDP) to study population dynamics suggests that they may be suitable for modelling complex fluvial ecosystems, characterized by a composition of dynamic habitats with many variables that interact simultaneously. Using as a model a reservoir occupied by the zebra mussel Dreissena polymorpha, we designed a computational model based on P systems to study the population dynamics of larvae, in order to evaluate management actions to control or eradicate this invasive species. The population dynamics of this species was simulated under different scenarios ranging from the absence of water flow change to a weekly variation with different flow rates, to the actual hydrodynamic situation of an intermediate flow rate. Our results show that PDP models can be very useful tools to model complex, partially desynchronized, processes that work in parallel. This allows the study of complex hydroecological processes such as the one presented, where reproductive cycles, temperature and water dynamics are involved in the desynchronization of the population dynamics both, within areas and among them. The results obtained may be useful in the management of other reservoirs with similar hydrodynamic situations in which the presence of this invasive species has been documented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PRINCIPALS Over a million people worldwide die each year from road traffic injuries and more than 10 million sustain permanent disabilities. Many of these victims are pedestrians. The present retrospective study analyzes the severity and mortality of injuries suffered by adult pedestrians, depending on whether they used a zebra crosswalk. METHODS Our retrospective data analysis covered adult patients admitted to our emergency department (ED) between 1 January 2000 and 31 December 2012 after being hit by a vehicle while crossing the road as a pedestrian. Patients were identified by using a string term. Medical, police and ambulance records were reviewed for data extraction. RESULTS A total of 347 patients were eligible for study inclusion. Two hundred and three (203; 58.5%) patients were on a zebra crosswalk and 144 (41.5%) were not. The mean ISS (injury Severity Score) was 12.1 (SD 14.7, range 1-75). The vehicles were faster in non-zebra crosswalk accidents (47.7 km/n, versus 41.4 km/h, p<0.027). The mean ISS score was higher in patients with non-zebra crosswalk accidents; 14.4 (SD 16.5, range 1-75) versus 10.5 (SD13.14, range 1-75) (p<0.019). Zebra crosswalk accidents were associated with less risk of severe injury (OR 0.61, 95% CI 0.38-0.98, p<0.042). Accidents involving a truck were associated with increased risk of severe injury (OR 3.53, 95%CI 1.21-10.26, p<0.02). CONCLUSION Accidents on zebra crosswalks are more common than those not on zebra crosswalks. The injury severity of non-zebra crosswalk accidents is significantly higher than in patients with zebra crosswalk accidents. Accidents involving large vehicles are associated with increased risk of severe injury. Further prospective studies are needed, with detailed assessment of motor vehicle types and speed.