10 resultados para ZWITTERIONIC DETERGENTS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches.
Resumo:
A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i) chemical binding assay, (ii) surface plasmon resonance spectroscopy (SPR), (iii) solid-state (31)P-NMR, and (iv) differential scanning calorimetry (DSC). SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults, but could have more general implications for many physiological membrane-related functions that are relevant for health and disease.
Resumo:
Lateral segregation of cholesterol- and sphingomyelin-rich rafts and glycerophospholipid-containing non-raft microdomains has been proposed to play a role in a variety of biological processes. The most compelling evidence for membrane segregation is based on the observation that extraction with non-ionic detergents leads to solubilization of a subset of membrane components only. However, one decade later, a large body of inconsistent detergent-extraction data is threatening the very concept of membrane segregation. We have assessed the validity of the existing paradigms and we show the following. (i) The localization of a membrane component within a particular fraction of a sucrose gradient cannot be taken as a yardstick for its solubility: a variable localization of the DRMs (detergent-resistant membranes) in sucrose gradients is the result of complex associations between the membrane skeleton and the lipid bilayer. (ii) DRMs of variable composition can be generated by using a single detergent, the increasing concentration of which gradually extracts one protein/lipid after another. Therefore any extraction pattern obtained by a single concentration experiment is bound to be 'investigator-specific'. It follows that comparison of DRMs obtained by different detergents in a single concentration experiment is prone to misinterpretations. (iii) Depletion of cholesterol has a graded effect on membrane solubility. (iv) Differences in detergent solubility of the members of the annexin protein family arise from their association with chemically different membrane compartments; however, these cannot be attributed to the 'brick-like' raft-building blocks of fixed size and chemical composition. Our findings demonstrate a need for critical re-evaluation of the accumulated detergent-extraction data.
Resumo:
The solution structure of cupiennin 1a, a 35 residue, basic antibacterial peptide isolated from the venom of the spider Cupiennius salei, has been determined by nuclear magnetic resonance (NMR) spectroscopy. The peptide was found to adopt a helix−hinge−helix structure in a membrane mimicking solvent. The hinge may play a role in allowing the amphipathic N-terminal helix and polar C-terminal helix to orient independently upon membrane binding, in order to achieve maximal antibacterial efficacy. Solid-state 31P and 2H NMR was used to further study the effects of cupiennin 1a on the dynamic properties of lipid membranes, using zwitterionic chain deuterated dimyristoylphosphatidylcholine (d54-DMPC) and anionic dimyristoylphosphatidylglycerol (DMPG) multilamellar vesicles. In d54-DMPC alone, cupiennin 1a caused a decrease in the 31P chemical shift anisotropy, indicating some interaction with the lipid head groups, and a decrease in order over the entire acyl chain. In contrast, for the mixed (d54-DMPC/DMPG) lipid system cupiennin 1a appeared to induce lateral separation of the two lipids as evidenced by the 31P spectra, in which the peptide preferentially interacted with DMPG. Little effect was observed on the deuterated acyl chain order parameters in the d54-DMPC/DMPG model membranes. Furthermore, 31P NMR relaxation measurements confirmed a differential effect on the lipid motions depending upon the membrane composition. Therefore, subtle differences are likely in the mechanism by which cupiennin 1a causes membrane lysis in either prokaryotic or eukaryotic cells, and may explain the specific spectrum of activity.
Resumo:
Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.
Resumo:
The rearrangement of methyl 2-(methylthio)benzenesulfonate (1) to the zwitterionic 2-(dimethyl-sulfonium)benzenesulfonate (2) is known to proceed in solution by intermolecular Me transfers. The same rearrangement has been observed to occur in crystalline 1, but the crystal structure shows that the molecular packing is not conducive to intermolecular Me transfer. The reaction has been carried out with mixed crystals composed of 1 and deuteriomethylated (D6)-l. By fast-atom-bombardment mass spectroscopy, it has been shown that the product consists of a 1:2:1 mixture of the non-, tri-, and hexadeuterated species, the mixture expected, if the solid-state reaction proceeds by intermolecular Me transfers. From this result, together with the slower rates of conversion in the single crystal compared with the melt, it can be concluded that the reaction must occur not topochemically but rather at defects such as microcavities, surfaces, and other irregularities in the ordered crystal arrangement.
Resumo:
Toothpastes contain three main components: detergents, abrasives, and fluoride. Detergents, particularly sodium lauryl sulfate, have been proposed as components that enable toothpastes to produce cytotoxic effects in vitro. However, not all toothpastes contain sodium lauryl sulfate, and almost no studies have found an association between detergents and the in vitro cytotoxicity of toothpastes. The present study examined the in vitro cytotoxicity of nine commercially available toothpastes containing four different detergents. Toothpastes were diluted in serum-free medium, centrifuged, and filter sterilized. The half-lethal concentration of the toothpaste-conditioned medium (TCM) was calculated based on the formation of formazan by gingival fibroblasts, oral squamous cell carcinoma HSC-2 cells, and L929 cells. Cell proliferation was analyzed, and live-dead staining was performed, after exposure of cells to conditioned medium prepared with 1% toothpaste (1% TCM). It was found that toothpastes containing sodium lauryl sulfate and amine fluoride strongly inhibited cell viability with the half-lethal concentration being obtained with conditioned medium prepared with approximately 1% toothpaste (1% TCM). Toothpastes containing cocamidopropyl betaine and Steareth-20 showed higher half-lethal concentration values, with the half-lethal concentration being obtained with conditioned medium prepared with 10% (10% TCM) and 70% (70% TCM) toothpaste, respectively. Proliferation and live-dead data were consistent with the cell-viability analyses. These results demonstrate that the type of detergent in toothpastes can be associated with changes in in vitro cell toxicity.
Resumo:
Arabidopsis thaliana grows efficiently on GABA as the sole nitrogen source, thereby providing evidence for the existence of GABA transporters in plants. Heterologous complementation of a GABA uptake-deficient yeast mutant identified two previously known plant amino acid transporters, AAP3 and ProT2, as GABA transporters with Michaelis constants of 12.9±1.7 and 1.7±0.3 mM at pH 4, respectively. The simultaneous transport of [1-14C]GABA and [2,3-3H]proline by ProT2 as a function of pH, provided evidence that the zwitterionic state of GABA is an important parameter in substrate recognition. ProT2-mediated [1-14C]GABA transport was inhibited by proline and quaternary ammonium compounds.