28 resultados para Yersinia outer protein T
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this chapter the methodological bases are provided to achieve subnanometer resolution on two-dimensional (2D) membrane protein crystals by atomic force microscopy (AFM). This is outlined in detail with the example of AFM studies of the outer membrane protein F (OmpF) from the bacterium Escherichia coli (E. coli). We describe in detail the high-resolution imaging of 2D OmpF crystals in aqueous solution and under near-physiological conditions. The topographs of OmpF, and stylus effects and artifacts encountered when imaging by AFM are discussed.
Resumo:
Invasion of non-professional phagocytes is a strategy employed by several mucosal pathogens, but has not been investigated in detail for Moraxella catarrhalis, a major cause of human respiratory tract infections. We investigated the role of outer membrane protein (OMP) UspA1 and lipooligosaccharide (LOS) in M. catarrhalis invasion into epithelial cells. An isogenic mutant of strain O35E, which lacked expression of the UspA1 adhesin, demonstrated not only severely impaired adherence (86%) to but also reduced invasion (77%) into Chang conjunctival cells in comparison with the wild-type strain. The isogenic, LOS-deficient mutant strain O35E.lpxA was attenuated in adherence (93%) and its capacity to invade was severely reduced (95%), but not abolished. Inhibition assays using sucrose and cytochalasin D, respectively, demonstrated that clathrin and actin polymerization contribute to internalization of M. catarrhalis by Chang cells. Furthermore, inhibition of UspA1-mediated binding to cell-associated fibronectin and alpha5beta1 integrin decreased invasion of M. catarrhalis strain O35E (72% and 41%, respectively). These data indicate that OMP UspA1 and LOS profoundly affect the capacity of M. catarrhalis to invade epithelial cells.
Resumo:
Kinetoplastids are defined by the unique organization of their mitochondrial DNA (kDNA). It forms a highly concatenated DNA network that is linked to the basal body of the flagellum by the tripartite attachment complex (TAC). The TAC encompasses intra and extramitochondrial filaments and a highly differentiated region of the two mitochondrial membranes. Here we identify and characterize a mitochondrial outer membrane protein of Trypanosoma brucei that is predominantly localized in the TAC. The protein is essential for growth in both life cycle stages. Immunofluorescence shows that ablation of the protein does not affect kDNA replication but abolishes the segregation of the replicated kDNA network causing rapid loss of kDNA. Besides its role in kDNA maintenance in vivo and in vitro experiments show that the protein is involved in mitochondrial protein import and that it interacts with a recently discovered protein import factor. RNAi experiments in a T. brucei cell line in which the kDNA is dispensable suggest that the essential function is linked to kDNA maintenance. Bioinformatic analysis shows that the studied outer membrane protein has beta-barrel topology and that it belongs to the mitochondrial porin family comprising VDAC, Tom40 and Mdm10. Interestingly, Mdm10 has sofar only been found in yeast. Ist function in protein import and mitochondrial DNA maintenance suggests that the protein in our study is the functional homologue of Mdm10. Thus, the TAC – a defining structure of Kinetoplastids – contains a conserved protein which in yeast and trypanosomes performs the same function. Our study therefore provides an example that trypanosomal biology, rather than being unique, often simply represents a more extreme manifestation of a conserved biological concept.
Resumo:
Kinetoplastids are defined by the unique organization of their mitochondrial DNA (kDNA). It forms a highly concatenated DNA network that is linked to the basal body of the flagellum by the tripartite attachment complex (TAC). The TAC encompasses intra and extramitochondrial filaments and a highly differentiated region of the two mitochondrial membranes. Here we identify and characterize a mitochondrial outer membrane protein of Trypanosoma brucei that is predominantly localized in the TAC. The protein is essential for growth in both life cycle stages. Immunofluorescence shows that ablation of the protein does not affect kDNA replication but abolishes the segregation of the replicated kDNA network causing rapid loss of kDNA. Besides its role in kDNA maintenance in vivo and in vitro experiments show that the protein is involved in mitochondrial protein import and that it interacts with a recently discovered protein import factor. RNAi experiments in a T. brucei cell line in which the kDNA is dispensable suggest that the essential function is linked to kDNA maintenance. Bioinformatic analysis shows that the studied outer membrane protein has beta-barrel topology and that it belongs to the mitochondrial porin family comprising VDAC, Tom40 and Mdm10. Interestingly, Mdm10 has so far only been found in yeast. Its function in protein import and mitochondrial DNA maintenance suggests that the protein in our study is the functional homologue of Mdm10. Thus, the TAC – a defining structure of Kinetoplastids – contains a conserved protein which in yeast and trypanosomes performs the same function. Our study therefore provides an example that trypanosomal biology, rather than being unique, often simply represents a more extreme manifestation of a conserved biological concept.
Resumo:
A 14-kDa outer membrane protein (OMP) was purified from Actinobacillus pleuro-pneumoniae serotype 2. The protein strongly reacts with sera from pigs experimentally or naturally infected with any of the 12 serotypes of A. pleuropneumoniae. The gene encoding this protein was isolated from a gene library of A. pleuropneumoniae serotype 2 reference strain by immunoscreening. Expression of the cloned gene in Escherichia coli revealed that the protein is also located in the outer membrane fraction of the recombinant host. DNA sequence analysis of the gene reveals high similarity of the protein's amino acid sequence to that of the E. coli peptidoglycan-associated lipoprotein PAL, to the Haemophilus influenzae OMP P6 and to related proteins of several other Gram-negative bacteria. We have therefore named the 14-kDa protein PalA, and its corresponding gene, palA. The 20 amino-terminal amino acid residues of PalA constitute a signal sequence characteristic of membrane lipoproteins of prokaryotes with a recognition site for the signal sequence peptidase II and a sorting signal for the final localization of the mature protein in the outer membrane. The DNA sequence upstream of palA contains an open reading frame which is highly similar to the E. coli tolB gene, indicating a gene cluster in A. pleuropneumoniae which is very similar to the E. coli tol locus. The palA gene is conserved and expressed in all A. pleuropneumoniae serotypes and in A. lignieresii. A very similar palA gene is present in A. suis and A. equuli.
Resumo:
Bluetongue virus (BTV) is an arthropod-borne pathogen that causes an often fatal, hemorrhagic disease in ruminants. Different BTV serotypes occur throughout many temperate and tropical regions of the world. In 2006, BTV serotype 8 (BTV-8) emerged in Central and Northern Europe for the first time. Although this outbreak was eventually controlled using inactivated virus vaccines, the epidemic caused significant economic losses not only from the disease in livestock but also from trade restrictions. To date, BTV vaccines that allow simple serological discrimination of infected and vaccinated animals (DIVA) have not been approved for use in livestock. In this study, we generated recombinant RNA replicon particles based on single-cycle vesicular stomatitis virus (VSV) vectors. Immunization of sheep with infectious VSV replicon particles expressing the outer capsid VP2 protein of BTV-8 resulted in induction of BTV-8 serotype-specific neutralizing antibodies. After challenge with a virulent BTV-8 strain, the vaccinated animals neither developed signs of disease nor showed viremia. In contrast, immunization of sheep with recombinant VP5 - the second outer capsid protein of BTV - did not confer protection. Discrimination of infected from vaccinated animals was readily achieved using an ELISA for detection of antibodies against the VP7 antigen. These data indicate that VSV replicon particles potentially represent a safe and efficacious vaccine platform with which to control future outbreaks by BTV-8 or other serotypes, especially in previously non-endemic regions where discrimination between vaccinated and infected animals is crucial.
Resumo:
The pathway of copper entry into Escherichia coli is still unknown. In an attempt to shed light on this process, a lux-based biosensor was utilized to monitor intracellular copper levels in situ. From a transposon-mutagenized library, strains were selected in which copper entry into cells was reduced, apparent as clones with reduced luminescence when grown in the presence of copper (low-glowers). One low-glower had a transposon insertion in the comR gene, which encodes a TetR-like transcriptional regulator. The mutant strain could be complemented by the comR gene on a plasmid, restoring luminescence to wild-type levels. ComR did not regulate its own expression, but was required for copper-induction of the neighboring, divergently transcribed comC gene, as shown by real-time quantitative PCR and with a promoter-lux fusion. The purified ComR regulator bound to the promoter region of the comC gene in vitro and was released by copper. By membrane fractionation, ComC was shown to be localized in the outer membrane. When grown in the presence of copper, ∆comC cells had higher periplasmic and cytoplasmic copper levels, compared to the wild-type, as assessed by the activation of the periplasmic CusRS sensor and the cytoplasmic CueR sensor, respectively. Thus, ComC is an outer membrane protein which lowers the permeability of the outer membrane to copper. The expression of ComC is controlled by ComR, a novel, TetR-like copper-responsive repressor.
Resumo:
Moraxella catarrhalis is a major mucosal pathogen of the human respiratory tract both in children and in adults. Two subpopulations of this organism have been described that differ in 16S rRNA gene sequence and virulence traits. Three 16S rRNA types have been defined. 2-DE followed by protein identification by MS revealed significant differences in the outer membrane protein (OMP) patterns of each M. catarrhalis 16S rRNA type. Approximately 130 features were detected on the 2-DE map of each M. catarrhalis 16S rRNA type. However, only 50 features were expressed by all strains. Furthermore, direct profiling of isolated OMP using MALDI-TOF MS resulted in a characteristic spectral fingerprint for each 16S rRNA type. Fingerprints remained identical when intact cells instead of isolated OMP were analyzed. This finding suggests that the source of desorbed ions is the outer membrane. Based on the fingerprint we were able to assign 18 well-characterized clinical M. catarrhalis isolates to the correct subpopulation. Therefore, MALDI-TOF of intact M. catarrhalis provides a rapid and robust tool for M. catarrhalis strain typing that could be applied in epidemiological studies.
Resumo:
Moraxella catarrhalis is a major mucosal pathogen of the human respiratory tract, but the mucosal immune response directed against surface components of this organism has not been characterized in detail. The aim of this study was to investigate the salivary immunoglobulin A (IgA) response toward outer membrane proteins (OMP) of M. catarrhalis in healthy adults, the group of individuals least likely to be colonized and thus most likely to display mucosal immunity. Unstimulated saliva samples collected from 14 healthy adult volunteers were subjected to IgA immunoblot analysis with OMP preparations of M. catarrhalis strain O35E. Immunoblot analysis revealed a consistent pattern of IgA reactivity, with the appearance of five major bands located at >250, 200, 120, 80, and 60 kDa. Eleven (79%) of 14 saliva samples elicited reactivity to all five bands. Immunoblot analysis with a set of isogenic knockout mutants lacking the expression of individual OMP was used to determine the identities of OMP giving rise to IgA bands. Human saliva was shown consistently to exhibit IgA-binding activity for oligomeric UspA2 (>250 kDa), hemagglutinin (200 kDa), monomeric UspA1 (120 kDa), transferrin-binding protein B (TbpB), monomeric UspA2, CopB, and presumably OMP CD. TbpB, oligomeric UspA2, and CopB formed a cluster of bands at about 80 kDa. These data indicate that the human salivary IgA response is directed consistently against a small number of major OMP, some of which are presently considered vaccine candidates. The functional properties of these mucosal antibodies remain to be elucidated.