20 resultados para XENOTRANSPLANTATION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the possible presence of malignant cells in ovarian cortex from patients with ovarian tumors after xenografting of the ovarian tissue into severe combined immunodeficiency mice. None of the mice presented symptoms of reintroduced malignancy nor did microscopic and immunohistochemical evaluation of the grafts raise any suspicion of residual malignant disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endothelium, as an organ at the interface between the intra- and extravascular space, actively participates in maintaining an anti-inflammatory and anti-coagulant environment under physiological conditions. Severe humoral as well as cellular rejection responses, which accompany cross-species transplantation of vascularized organs as well as ischemia/reperfusion injury, primarily target the endothelium and disrupt this delicate balance. Activation of pro-inflammatory and pro-coagulant pathways often lead to irreversible injury not only of the endothelial layer but also of the entire graft, with ensuing rejection. This review focuses on strategies targeted at protecting the endothelium from such damaging effects, ranging from genetic manipulation of the donor organ to soluble, as well as membrane-targeted, protective strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Studying the interactions between xenoreactive antibodies, complement and coagulation factors with the endothelium in hyperacute and acute vascular rejection usually necessitates the use of in vivo models. Conventional in vitro or ex vivo systems require either serum, plasma or anti-coagulated whole blood, making analysis of coagulation-mediated effects difficult. Here a novel in vitro microcarrier-based system for the study of endothelial cell (EC) activation and damage, using non-anticoagulated whole blood is described. Once established, the model was used to study the effect of the characterized complement- and coagulation inhibitor dextran sulfate (DXS, MW 5000) for its EC protective properties in a xenotransplantation setting. METHODS: Porcine aortic endothelial cells (PAEC), grown to confluence on microcarrier beads, were incubated with non-anticoagulated whole human blood until coagulation occurred or for a maximum of 90 min. PAEC-beads were either pre- or co-incubated with DXS. Phosphate buffered saline (PBS) experiments served as controls. Fluid phase and surface activation markers for complement and coagulation were analyzed as well as binding of DXS to PAEC-beads. RESULTS: Co- as well as pre-incubation of DXS, followed by washing of the beads, significantly prolonged time to coagulation from 39 +/- 12 min (PBS control) to 74 +/- 23 and 77 +/- 20 min, respectively (P < 0.005 vs. PBS). DXS treatment attenuated surface deposition of C1q, C4b/c, C3b/c and C5b-9 without affecting IgG or IgM deposition. Endothelial integrity, expressed by positivity for von Willebrand Factor, was maintained longer with DXS treatment. Compared with PBS controls, both pre- and co-incubation with DXS significantly prolonged activated partial thromboplastin time (>300 s, P < 0.05) and reduced production of thrombin-antithrombin complexes and fibrinopeptide A. Whilst DXS co-incubation completely blocked classical pathway complement activity (CH50 test) DXS pre-incubation or PBS control experiments showed no inhibition. DXS bound to PAEC-beads as visualized using fluorescein-labeled DXS. CONCLUSIONS: This novel in vitro microcarrier model can be used to study EC damage and the complex interactions with whole blood as well as screen ''endothelial protective'' substances in a xenotransplantation setting. DXS provides EC protection in this in vitro setting, attenuating damage of ECs as seen in hyperacute xenograft rejection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Activation of endothelial cells (EC) in xenotransplantation is mostly induced through binding of antibodies (Ab) and activation of the complement system. Activated EC lose their heparan sulfate proteoglycan (HSPG) layer and exhibit a procoagulant and pro-inflammatory cell surface. We have recently shown that the semi-synthetic proteoglycan analog dextran sulfate (DXS, MW 5000) blocks activation of the complement cascade and acts as an EC-protectant both in vitro and in vivo. However, DXS is a strong anticoagulant and systemic use of this substance in a clinical setting might therefore be compromised. It was the aim of this study to investigate a novel, fully synthetic EC-protectant with reduced inhibition of the coagulation system. METHOD: By screening with standard complement (CH50) and coagulation assays (activated partial thromboplastin time, aPTT), a conjugate of tyrosine sulfate to a polymer-backbone (sTyr-PAA) was identified as a candidate EC-protectant. The pathway-specificity of complement inhibition by sTyr-PAA was tested in hemolytic assays. To further characterize the substance, the effects of sTyr-PAA and DXS on complement deposition on pig cells were compared by flow cytometry and cytotoxicity assays. Using fluorescein-labeled sTyr-PAA (sTyr-PAA-Fluo), the binding of sTyr-PAA to cell surfaces was also investigated. RESULTS: Of all tested compounds, sTyr-PAA was the most effective substance in inhibiting all three pathways of complement activation. Its capacity to inhibit the coagulation cascade was significantly reduced as compared with DXS. sTyr-PAA also dose-dependently inhibited deposition of human complement on pig cells and this inhibition correlated with the binding of sTyr-PAA to the cells. Moreover, we were able to demonstrate that sTyr-PAA binds preferentially and dose-dependently to damaged EC. CONCLUSIONS: We could show that sTyr-PAA acts as an EC-protectant by binding to the cells and protecting them from complement-mediated damage. It has less effect on the coagulation system than DXS and may therefore have potential for in vivo application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We showed recently that low molecular weight dextran sulfate (DXS) acts as an endothelial cell (EC) protectant and prevents human complement- and NK cell-mediated cytotoxicity towards porcine cells in vitro. We therefore hypothesized that DXS, combined with cyclosporine A (CyA), could prevent acute vascular rejection (AVR) in the hamster-to-rat cardiac xenotransplantation model. Untreated, CyA-only, and DXS-only treated rats rejected their grafts within 4-5 days. Of the hearts grafted into rats receiving DXS in combination with CyA, 28% survived more than 30 days. Deposition of anti-hamster antibodies and complement was detected in long-term surviving grafts. Combined with the expression of hemoxygenase 1 (HO-1) on graft EC, these results indicate that accommodation had occurred. Complement activity was normal in rat sera after DXS injection, and while systemic inhibition of the coagulation cascade was observed 1 h after DXS injection, it was absent after 24 h. Moreover, using a fluorescein-labeled DXS (DXS-Fluo) injected 1 day after surgery, we observed a specific binding of DXS-Fluo to the xenograft endothelium. In conclusion, we show here that DXS + CyA induces long-term xenograft survival and we provide evidence that DXS might act as a local EC protectant also in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Natural IgM containing anti-Gal antibodies initiates classic pathway complement activation in xenotransplantation. However, in ischemia-reperfusion injury, IgM also induces lectin pathway activation. The present study was therefore focused on lectin pathway as well as interaction of IgM and mannose-binding lectin (MBL) in pig-to-human xenotransplantation models. METHODS Activation of the different complement pathways was assessed by cell enzyme-linked immunosorbent assay using human serum on wild-type (WT) and α-galactosyl transferase knockout (GalTKO)/hCD46-transgenic porcine aortic endothelial cells (PAEC). Colocalization of MBL/MASP2 with IgM, C3b/c, C4b/c, and C6 was investigated by immunofluorescence in vitro on PAEC and ex vivo in pig leg xenoperfusion with human blood. Influence of IgM on MBL binding to PAEC was tested using IgM depleted/repleted and anti-Gal immunoabsorbed serum. RESULTS Activation of all the three complement pathways was observed in vitro as indicated by IgM, C1q, MBL, and factor Bb deposition on WT PAEC. MBL deposition colocalized with MASP2 (Manders' coefficient [3D] r=0.93), C3b/c (r=0.84), C4b/c (r=0.86), and C6 (r=0.80). IgM colocalized with MBL (r=0.87) and MASP2 (r=0.83). Human IgM led to dose-dependently increased deposition of MBL, C3b/c, and C6 on WT PAEC. Colocalization of MBL with IgM (Pearson's coefficient [2D] rp=0.88), C3b/c (rp=0.82), C4b/c (rp=0.63), and C6 (rp=0.81) was also seen in ex vivo xenoperfusion. Significantly reduced MBL deposition and complement activation was observed on GalTKO/hCD46-PAEC. CONCLUSION Colocalization of MBL/MASP2 with IgM and complement suggests that the lectin pathway is activated by human anti-Gal IgM and may play a pathophysiologic role in pig-to-human xenotransplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To systematically review the reporting of MII (MII) oocyte development after xenotransplantation of human ovarian tissue. DESIGN Systematic review in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). SETTING Not applicable. PATIENT(S) Not applicable. INTERVENTION(S) Formation of MII oocytes after xenotransplantation of human ovarian tissue. MAIN OUTCOME MEASURE(S) Any outcome reported in Pubmed. RESULT(S) Six publications were identified that report on formation of MII oocytes after xenotransplantation of human ovarian tissue. CONCLUSION(S) Xenografting of human ovarian tissue has proved to be a useful model for examining ovarian function and follicle development in vivo. With human follicles that have matured through xenografting, the possibility of cancer transmission and relapse can also be eliminated, because cancer cells are not able to penetrate the zona pellucida. The reported studies have demonstrated that xenografted ovarian tissue from a range of species, including humans, can produce antral follicles that contain mature (MII) oocytes, and it has been shown that mice oocytes have the potential to give rise to live young. Although some ethical questions remain unresolved, xenotransplantation may be a promising method for restoring fertility. This review furthermore describes the value of xenotransplantation as a tool in reproductive biology and discusses the ethical and potential safety issues regarding ovarian tissue xenotransplantation as a means of recovering fertility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute vascular rejection (AVR), in particular microvascular thrombosis, is an important barrier to successful pig-to-primate xenotransplantation. Here, we report the generation of pigs with decreased tissue factor (TF) levels induced by small interfering (si)RNA-mediated gene silencing. Porcine fibroblasts were transfected with TF-targeting small hairpin (sh)RNA and used for somatic cell nuclear transfer. Offspring were analyzed for siRNA, TF mRNA and TF protein level. Functionality of TF downregulation was investigated by a whole blood clotting test and a flow chamber assay. TF siRNA was expressed in all twelve liveborn piglets. TF mRNA expression was reduced by 94.1 ± 4.7% in TF knockdown (TFkd) fibroblasts compared to wild-type (WT). TF protein expression in PAEC stimulated with 50 ng/mL TNF-α was significantly lower in TFkd pigs (mean fluorescence intensity TFkd: 7136 ± 136 vs. WT: 13 038 ± 1672). TF downregulation significantly increased clotting time (TFkd: 73.3 ± 8.8 min, WT: 45.8 ± 7.7 min, p < 0.0001) and significantly decreased thrombus formation compared to WT (mean thrombus coverage per viewing field in %; WT: 23.5 ± 13.0, TFkd: 2.6 ± 3.7, p < 0.0001). Our data show that a functional knockdown of TF is compatible with normal development and survival of pigs. TF knockdown could be a valuable component in the generation of multi-transgenic pigs for xenotransplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinetic investigations in pediatric acute lymphoblastic leukemia (ALL) are based on all blast cells and, therefore, reflect the proliferative characteristics of the predominant immunophenotype of leukemic cells. Nothing is known about proliferation of immunologically defined rare subpopulations of leukemic cells. In this study, mononuclear cells from the bone marrow of 15 children with untreated CD19 B-cell precursor ALL were examined for proliferative features according to the immunophenotype. After exclusion of highly proliferating residual normal hematopoietic cells, ∼ 3% of blast cells were CD19 and showed a low percentage of cells in S-phase assessed by the bromodeoxyuridine labeling index (BrdU-LI): median BrdU-LI, 0.19% [interquartile range (IQR), 0.15-0.40%]. In contrast, a median BrdU-LI of 7.2% (IQR, 5.7-8.8%) was found for the major CD19 blast cell compartment. Staining smears of sorted CD19 cells for CD10 or CD34 revealed a small fraction of CD19CD10 or CD19CD34 blast cells. These cells were almost nonproliferating with a median BrdU-LI of <0.1% (IQR, 0-0.2%). This proliferative behavior is suggestive of a stem/progenitor cell function and, in addition, the low proliferative activity might render them more resistant to an antiproliferation-based chemotherapy. However, xenotransplantation experiments will be necessary to demonstrate a possible stem cell function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently reported a complete change in the endothelial ABO histo-blood group phenotype of a cardiac allograft long term after B to O mismatched transplantation. In the context of the current controversy on graft recolonization with recipient endothelial cells and its importance in the development of immunological unresponsiveness, we monitored the expression of endothelial ABH histo-blood group antigens of 10 ABO-compatible, non-identical cardiac allografts over an observation period of at least 30 months. ABH antigens as well as markers for endothelial cells, erythrocytes and thrombocytes were investigated retrospectively by immunohistochemistry using monoclonal antibodies on sections of formalin-fixed, paraffin-embedded biopsies and were evaluated semi-quantitatively by microscopy. In contrast to our earlier finding of the change in the endothelial ABO histo-blood group phenotype long term after ABO- mismatched transplantation, we could not confirm this change in 10 compatible but non-identical cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Natural xenoreactive antibodies (Abs) directed against the Bdi-epitope (Gal alpha 1-3Gal beta) on the cells of non-primate mammals take part in hyperacute rejection of xenotransplanted organs. We found that some Abs, which were one-step affinity purified on Bdi-Sepharose, cross-reacted with the disaccharide Gal alpha 1-4GlcNAc beta. The epitope Gal alpha 1-4GlcNAc has not been identified on mammals or bacterial polysaccharides yet. METHODS: To isolate the antibodies of the corresponding specificity the disaccharide was immobilized on Sepharose and antibodies were affinity purified from pooled serum of blood group O individuals. RESULTS: These one-step purified Abs cross-reacted with Bdi, but after a prior absorption step on Bdi-Sepharose no cross-reactivity with Bdi was observed any longer. Surprisingly, the quantity of anti-Gal alpha 1-4GlcNAc isolated from the same serum pool, 4-7 microg/ml, was equal to that of anti-Bdi or more. Independently of ABO blood groups all the tested healthy donors had anti-Gal alpha 1-4GlcNAc Abs at a similar level. Monospecific anti-Gal alpha 1-4GlcNAc Abs were not cytotoxic towards porcine cells. CONCLUSIONS: 1. The actual concentration of monospecific, xenoreactive Gal alpha 1-3Gal beta Abs in blood may be considerably lower than the value referred to in the literature for 'anti-alpha Gal' or 'anti-Galili' antibodies. 2. Anti-Gal alpha 1-4GlcNAc Abs seem not to be important for xenotransplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current organ shortage in transplantation medicine stimulates the exploration of new strategies to expand the donor pool including the utilisation of living donors, ABO-incompatible grafts, and xenotransplantation. Preformed natural antibodies (Ab) such as anti-Gal or anti-A/B Ab mediate hyperacute graft rejection and thus represent a major hurdle to the employment of such strategies. In contrast to solid organ transplantation (SOT), ABO blood group incompatibilities are of minor importance in haematopoietic stem cell transplantation (HSCT). Thus, ABO incompatible HSCT may serve as an in vivo model to study carbohydrate antigen (Ag)-mismatched transplantations such as ABO-incompatible SOT or the effect of preformed Ab against Gal in xenotransplantation. This mini-review summarises our clinical and experimental studies performed with the support of the Swiss National Science Foundation program on Implants and Transplants (NFP-46). Part 1 describes data on the clinical outcome of ABO-incompatible HSCT, in particular the incidence of several immunohaematological complications, acute graft-versus-host-disease (GvHD), and the overall survival. Part 2 summarises the measurements of anti-A/B Ab in healthy blood donors and ABO-incompatible HSCT using a novel flow cytometry based method and the potential mechanisms responsible for the loss of anti-A/B Ab observed following minor ABO-incompatible HSCT, ie the occurrence of humoral tolerance. Part 3 analyses the potential of eliminating Gal expression as well as specific complement inhibitors such as dextran sulfate and synthetic tyrosine analogues to protect porcine endothelial cells from xenoreactive Ab-mediated damage in vitro and in a hamster-to-rat heart transplantation model. In conclusion, due to similarities of the immunological hurdles of ABO incompatible transplantations and xenotransplantation, the knowledge obtained from both fields might lead to new strategies to overcome humoral rejection in transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute vascular rejection represents a formidable barrier to clinical xenotransplantation and it is known that this type of rejection can also be initiated by xenoreactive antibodies that have limited complement-activating ability. Using a sophisticated mouse model, a recent study has provided in vivo evidence for the existence of an IgG(1)-mediated vascular rejection, which uniquely depends on both the activation of complement and interactions with FcgammaRIII on natural killer (NK) cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.