60 resultados para Word Category Violations
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A word-length effect is often described in pure alexia, with reading time proportional to the number of letters in a word. Given the frequent association of right hemianopia with pure alexia, it is uncertain whether and how much of the word-length effect may be attributable to the hemifield loss. To isolate the contribution of the visual field defect, we simulated hemianopia in healthy subjects with a gaze-contingent paradigm during an eye-tracking experiment. We found a minimal word-length effect of 14 ms/letter for full-field viewing, which increased to 38 ms/letter in right hemianopia and to 31 ms/letter in left hemianopia. We found a correlation between mean reading time and the slope of the word-length effect in hemianopic conditions. The 95% upper prediction limits for the word-length effect were 51 ms/letter in subjects with full visual fields and 161 ms/letter with simulated right hemianopia. These limits, which can be considered diagnostic criteria for an alexic word-length effect, were consistent with the reading performance of six patients with diagnoses based independently on perimetric and imaging data: two patients with probable hemianopic dyslexia, and four with alexia and lesions of the left fusiform gyrus, two with and two without hemianopia. Two of these patients also showed reduction of the word-length effect over months, one with and one without a reading rehabilitation program. Our findings clarify the magnitude of the word-length effect that originates from hemianopia alone, and show that the criteria for a word-length effect indicative of alexia differ according to the degree of associated hemifield loss.
Resumo:
Behavioral studies suggest that women and men differ in the strategic elaboration of verbally encoded information especially in the absence of external task demand. However, measuring such covert processing requires other than behavioral data. The present study used event-related potentials to compare sexes in lower and higher order semantic processing during the passive reading of semantically related and unrelated word pairs. Women and men showed the same early context effect in the P1-N1 transition period. This finding indicates that the initial lexical-semantic access is similar in men and women. In contrast, sexes differed in higher order semantic processing. Women showed an earlier and longer lasting context effect in the N400 accompanied by larger signal strength in temporal networks similarly recruited by men and women. The results suggest that women spontaneously conduct a deeper semantic analysis. This leads to faster processing of related words in the active neural networks as reflected in a shorter stability of the N400 map in women. Taken together, the findings demonstrate that there is a selective sex difference in the controlled semantic analysis during passive word reading that is not reflected in different functional organization but in the depth of processing.