7 resultados para Woolen and worsted manufacture.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

To evaluate the use of computer-assisted designed and manufactured (CAD/CAM) orbital wall and floor implants for late reconstruction of extensive orbital fractures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new system for computer-aided corrective surgery of the jaws has been developed and introduced clinically. It combines three-dimensional (3-D) surgical planning with conventional dental occlusion planning. The developed software allows simulating the surgical correction on virtual 3-D models of the facial skeleton generated from computed tomography (CT) scans. Surgery planning and simulation include dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and segment repositioning. By coupling the software with a tracking system and with the help of a special registration procedure, we are able to acquire dental occlusion plans from plaster model mounts. Upon completion of the surgical plan, the setup is used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with the help of a display showing jaw positions and 3-D positioning guides updated in real time during the surgical procedure. The proposed approach offers the advantages of 3-D visualization and tracking technology without sacrificing long-proven cast-based techniques for dental occlusion evaluation. The system has been applied on one patient. Throughout this procedure, we have experienced improved assessment of pathology, increased precision, and augmented control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To evaluate technical complications and failures of zirconia-based fixed prostheses supported by implants. MATERIALS AND METHODS Consecutive patients received zirconia-based single crowns (SCs) and fixed dental prostheses (FDPs) on implants in a private clinical setting between 2005 and 2010. One dentist performed all surgical and prosthetic procedures, and one master technician performed and coordinated all laboratory procedures. One-piece computer-aided design/ computer-assisted manufacture technology was used to fabricate abutments and frameworks, which were directly connected at the implant level, where possible. All patients were involved in a recall maintenance program and were finally reviewed in 2012. Data on framework fractures, chipping of veneering ceramics, and other technical complications were recorded. The primary endpoint was failure of the prostheses, ie, the need for a complete remake. A life table analysis was calculated. RESULTS A total of 289 implants supported 193 zirconia-based prostheses (120 SCs and 73 FDPs) in 127 patients (51 men, 76 women; average age: 62.5 ± 13.4 years) who were reviewed in 2012. Twenty-five (13%) prostheses were cemented on 44 zirconia abutments and 168 (87%) prostheses were screw-retained directly at the implant level. Fracture of 3 frameworks (1 SC, 2 FDPs) was recorded, and significant chipping resulted in the remake of 3 prostheses (1 SC, 2 FDPs). The 7-year cumulative survival rate was 96.4% ± 1.99%. Minor complications comprised 5 loose screws (these were retightened), small chips associated with 3 prostheses (these were polished), and dislodgement of 3 prostheses (these were recemented). Overall, 176 prostheses remained free of technical problems. CONCLUSIONS Zirconia-based prostheses screwed directly to implants are clinically successful in the short and medium term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The objective of this study was to evaluate stiffness, strength, and failure modes of monolithic crowns produced using computer-aided design/computer-assisted manufacture, which are connected to diverse titanium and zirconia abutments on an implant system with tapered, internal connections. MATERIALS AND METHODS Twenty monolithic lithium disilicate (LS2) crowns were constructed and loaded on bone level-type implants in a universal testing machine under quasistatic conditions according to DIN ISO 14801. Comparative analysis included a 2 × 2 format: prefabricated titanium abutments using proprietary bonding bases (group A) vs nonproprietary bonding bases (group B), and customized zirconia abutments using proprietary Straumann CARES (group C) vs nonproprietary Astra Atlantis (group D) material. Stiffness and strength were assessed and calculated statistically with the Wilcoxon rank sum test. Cross-sections of each tested group were inspected microscopically. RESULTS Loaded LS2 crowns, implants, and abutment screws in all tested specimens (groups A, B, C, and D) did not show any visible fractures. For an analysis of titanium abutments (groups A and B), stiffness and strength showed equally high stability. In contrast, proprietary and nonproprietary customized zirconia abutments exhibited statistically significant differences with a mean strength of 366 N (Astra) and 541 N (CARES) (P < .05); as well as a mean stiffness of 884 N/mm (Astra) and 1,751 N/mm (CARES) (P < .05), respectively. Microscopic cross-sections revealed cracks in all zirconia abutments (groups C and D) below the implant shoulder. CONCLUSION Depending on the abutment design, prefabricated titanium abutment and proprietary customized zirconia implant-abutment connections in conjunction with monolithic LS2 crowns had the best results in this laboratory investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To compare time-efficiency in the production of implant crowns using a digital workflow versus the conventional pathway. MATERIALS AND METHODS This prospective clinical study used a crossover design that included 20 study participants receiving single-tooth replacements in posterior sites. Each patient received a customized titanium abutment plus a computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia suprastructure (for those in the test group, using digital workflow) and a standardized titanium abutment plus a porcelain-fused-to-metal crown (for those in the control group, using a conventional pathway). The start of the implant prosthetic treatment was established as the baseline. Time-efficiency analysis was defined as the primary outcome, and was measured for every single clinical and laboratory work step in minutes. Statistical analysis was calculated with the Wilcoxon rank sum test. RESULTS All crowns could be provided within two clinical appointments, independent of the manufacturing process. The mean total production time, as the sum of clinical plus laboratory work steps, was significantly different. The mean ± standard deviation (SD) time was 185.4 ± 17.9 minutes for the digital workflow process and 223.0 ± 26.2 minutes for the conventional pathway (P = .0001). Therefore, digital processing for overall treatment was 16% faster. Detailed analysis for the clinical treatment revealed a significantly reduced mean ± SD chair time of 27.3 ± 3.4 minutes for the test group compared with 33.2 ± 4.9 minutes for the control group (P = .0001). Similar results were found for the mean laboratory work time, with a significant decrease of 158.1 ± 17.2 minutes for the test group vs 189.8 ± 25.3 minutes for the control group (P = .0001). CONCLUSION Only a few studies have investigated efficiency parameters of digital workflows compared with conventional pathways in implant dental medicine. This investigation shows that the digital workflow seems to be more time-efficient than the established conventional production pathway for fixed implant-supported crowns. Both clinical chair time and laboratory manufacturing steps could be effectively shortened with the digital process of intraoral scanning plus CAD/CAM technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this research programme is to develop a single phase ceramic wasteform for waste PuO2 that is unsuitable for fuel manufacture. A suite of synthetic mineral systems have been considered including titanate, zirconate, phosphate and silicate based matrices. Although a wealth of information on plutonium disposition in some of the systems exists in the literature, the data is not always directly comparable which hinders comparison between different ceramic hosts. The crux of this research has been to compile a database of information on the proposed hosts to allow impartial comparison of the relative merits of each system. © 2009 Materials Research Society.