12 resultados para Wood physical properties
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE: To assess the effects of the highly reactive molecule of ozone on sound enamel physical properties and its effects on sealing ability. METHODS: The effect of ozone on sealant tag length, microleakage and unfilled area proportion were evaluated on intact and prepared sound molar fissures. Microhardness, contact angle and acid resistance tests were performed on ground sound smooth surfaces. The samples were treated with ozone for 40 seconds (HealOzone). Control samples were treated with air (modified HealOzone) or left untreated. RESULTS: No statistically significant difference was observed between the control and ozone treated samples in all tests. Prepared fissures exhibited no unfilled areas and a statistically significantly lower microleakage compared to intact fissures. Ozone was shown to dehydrate enamel and consequently enhance its microhardness, which was reversible.
Resumo:
To analyze the detection of endoleaks with low-tube-voltage computed tomographic (CT) angiography.
Resumo:
Erosive demineralisation causes characteristic histological features. In enamel, mineral is dissolved from the surface, resulting in a roughened structure similar to an etching pattern. If the acid impact continues, the initial surface mineral loss turns into bulk tissue loss and with time a visible defect can develop. The microhardness of the remaining surface is reduced, increasing the susceptibility to physical wear. The histology of eroded dentine is much more complex because the mineral component of the tissue is dissolved by acids whereas the organic part is remaining. At least in experimental erosion, a distinct zone of demineralised organic material develops, the thickness of which depends on the acid impact. This structure is of importance for many aspects, e.g. the progression rate or the interaction with active agents and physical impacts, and needs to be considered when quantifying mineral loss. The histology of experimental erosion is increasingly well understood, but there is lack of knowledge about the histology of in vivo lesions. For enamel erosion, it is reasonable to assume that the principal features may be similar, but the fate of the demineralised dentine matrix in the oral cavity is unclear. As dentine lesions normally appear hard clinically, it can be assumed that it is degraded by the variety of enzymes present in the oral cavity. Erosive tooth wear may lead to the formation of reactionary or reparative dentine.
Resumo:
Crystal structures of organosulfur donor 2-(5′,6′-dihydro[1,3]dithiolo[4,5-b][1,4]-dithiin-2′-ylidene)-6,7-di-hydro-5H-[1,3]dithiolo[4,5-b][1,4]dithiepine-6,6-dimethanol (D) and its conducting salt D2I3 are described. Conductivity properties of D2I3 are also discussed.