52 resultados para Wood anatomy
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The technical definition of ‘wood’ is well accepted, but its botanical understanding remains vague. Different degrees and amounts of lignification in plants and their imprecise description, together with a conceptually doubtful life form catalog including trees, shrubs and herbs further complicate our understanding of ‘wood’. Here, we use permanent micro sections to demonstrate that the xylem and bark of terrestrial plants can vary from one tissue with a few lignified cells to an almost fully lignified tissue. This universal principle of plant growth and stabilization, accounting for all taxonomic units within vascular plants, suggests that the classical life form separation into herbs, shrubs and trees is not valid. An anatomical-based differentiation between ‘wood’, ‘woody’ and ‘woodiness’ is also only meaningful if supplemented by insight on the particular plant section and its lignified proportion. We therefore recommend utilizing the botanically more neutral term ‘stem anatomy’ instead of ‘wood anatomy’, which further implies integration of the xylem and bark of all terrestrial plants. Since dendrochronology considers shrubs, dwarf shrubs and perennial herbs in addition to trees, its semantic expansion toward ‘xylemchronology’ might be worthwhile considering.
Resumo:
Gross dissection for demonstrating anatomy of the human pelvis has traditionally involved one of two approaches, each with advantages and disadvantages. Classic hemisection in the median plane through the pelvic ring transects the visceral organs but maintains two symmetric pelvic halves. An alternative paramedial transection compromises one side of the bony pelvis but leaves the internal organs intact. The authors propose a modified technique that combines advantages of both classical dissections. This novel approach involves dividing the pubic symphysis and sacrum in the median plane after shifting all internal organs to one side. The hemipelvis without internal organs is immediately available for further dissection of the lower limb. The hemipelvis with intact internal organs is ideal for showing the complex spatial relationships of the pelvic organs and vessels relative to the intact pelvic floor.
Resumo:
This article presents the implementation and validation of a dose calculation approach for deforming anatomical objects. Deformation is represented by deformation vector fields leading to deformed voxel grids representing the different deformation scenarios. Particle transport in the resulting deformed voxels is handled through the approximation of voxel surfaces by triangles in the geometry implementation of the Swiss Monte Carlo Plan framework. The focus lies on the validation methodology which uses computational phantoms representing the same physical object through regular and irregular voxel grids. These phantoms are chosen such that the new implementation for a deformed voxel grid can be compared directly with an established dose calculation algorithm for regular grids. Furthermore, separate validation of the aspects voxel geometry and the density changes resulting from deformation is achieved through suitable design of the validation phantom. We show that equivalent results are obtained with the proposed method and that no statistically significant errors are introduced through the implementation for irregular voxel geometries. This enables the use of the presented and validated implementation for further investigations of dose calculation on deforming anatomy.
Resumo:
The present study was conducted to assess the interrelation between teat anatomy and machine milking in dairy buffaloes raised in Switzerland. A 3-min pre-stimulation induced milk ejection before cluster attachment in most cases and caused an optimal milk removal during machine milking. In an additional experiment, longitudinal cross-section ultrasound was obtained before and after a 3-min pre-stimulation. Teat wall thickness, teat diameter, cisternal diameter and teat canal length were evaluated. It was observed that 3-min pre-stimulation dramatically reduced teat canal length whereas all the other anatomical parameters remained unchanged. The vacuum needed to open the teat canal was also measured before and after a 3-min pre-stimulation by using a special teat cup with only the mouthpiece of the liner remaining on the top of the teat cup (no liner, no pulsation). Without pre-stimulation but after wetting the teat canal by stripping one squirt of milk out of the teat, no milk could be withdrawn with a vacuum up to 39 kPa. However, after pre-stimulation, milk flow occurred in all buffaloes at a vacuum between 16 and 38 kPa. In the last experiment, the teat tissue was examined in slaughtered buffaloes and compared with teat tissue of cows. No difference was noted in histological sections and teat canal length was similar in cows and buffaloes. Proximal to the teat canal, the teat did not pass into an open cistern but the lumen was collapsed. In conclusion, buffaloes need to be well pre-stimulated because the tissue above the teat canal provides additional teat closure before milk ejection. Therefore, milk can only be obtained after pre-stimulation.
Resumo:
Nerve blocks and radiofrequency neurotomy of the nerves supplying the cervical zygapophyseal joints are validated tools for diagnosis and treatment of chronic neck pain, respectively. Unlike fluoroscopy, ultrasound may allow visualization of the target nerves, thereby potentially improving diagnostic accuracy and therapeutic efficacy of the procedures. The aims of this exploratory study were to determine the ultrasound visibility of the target nerves in chronic neck pain patients and to describe the variability of their course in relation to the fluoroscopically used bony landmarks.
Resumo:
Giulio Cesare Aranzio in Italian (Julius Caesar Arantius in Latin) has not received full acclaim for his achievements in the field of anatomy and surgery that remain unknown to most physicians. His anatomical books Observationes Anatomicas, and De Humano Foetu Opusculum and surgical books De Tumoribus Secundum Locos Affectos and Hippocratis librum de vulneribus capitis commentarius brevis printed in Latin and additional existing literature on Aranzio from medical history books and journals were analysed extensively. Aranzio became Professor of Anatomy and Surgery at the University of Bologna in 1556. He established anatomy as a distinguished branch of medicine for the first time in medical history. Aranzio combined anatomy with a description of pathological processes. He discovered the 'Nodules of Aranzio' in the semilunar valves of the heart. He gave the first description of the superior levator palpebral and the coracobrachialis muscles. Aranzio wrote on surgical techniques for a wide spectrum of conditions that range from hydrocephalus, nasal polyp, goitre and tumours to phimosis, ascites, haemorrhoids, anal abscess and fistulae, and much more. Aranzio had an extensive knowledge in surgery and anatomy based in part on the ancient Greek and his contemporaries in the 16th century but essentially on his personal experience and practice.
Resumo:
Recent publications have renewed the debate regarding the number of foot compartments. There is also no consensus regarding allocation of individual muscles and communication between compartments. The current study examines the anatomic topography of the foot compartments anew using 32 injections of epoxy-resin and subsequent sheet plastination in 12 cadaveric foot specimens. Six compartments were identified: dorsal, medial, lateral, superficial central, deep forefoot, and deep hindfoot compartments. Communication was evident between the deep hindfoot compartment and the superficial central and deep central forefoot compartments. In the hindfoot, the neurovascular bundles were located in separate tissue sheaths between the central hindfoot compartment and the medial compartment. In the forefoot, the medial and lateral bundles entered the deep central forefoot compartment. The deep central hindfoot compartment housed the quadratus plantae muscle, and after calcaneus fracture could develop an isolated compartment syndrome.
Resumo:
Limitations associated with the visual information provided to surgeons during laparoscopic surgery increases the difficulty of procedures and thus, reduces clinical indications and increases training time. This work presents a novel augmented reality visualization approach that aims to improve visual data supplied for the targeting of non visible anatomical structures in laparoscopic visceral surgery. The approach aims to facilitate the localisation of hidden structures with minimal damage to surrounding structures and with minimal training requirements. The proposed augmented reality visualization approach incorporates endoscopic images overlaid with virtual 3D models of underlying critical structures in addition to targeting and depth information pertaining to targeted structures. Image overlay was achieved through the implementation of camera calibration techniques and integration of the optically tracked endoscope into an existing image guidance system for liver surgery. The approach was validated in accuracy, clinical integration and targeting experiments. Accuracy of the overlay was found to have a mean value of 3.5 mm ± 1.9 mm and 92.7% of targets within a liver phantom were successfully located laparoscopically by non trained subjects using the approach.