33 resultados para Wisconsin Avenue (Washington, D.C.)--Maps, Manuscript.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Objetivo de esta comunicación es presentar los resultados sobre un análisis realizado en torno a lo que podemos denominar el «paisaje lingüístico hispano virtual» en Washington D.F. Los estudios sobre paisaje lingüístico han experimentado en el último tiempo un verdadero boom, sobre todo como reflejo de la convivencia de diferentes culturas con sus respectivas lenguas y variedades en las urbes del siglo XXI. En efecto: el paisaje lingüístico multilingüe es uno de los aspectos más explotados en trabajos en esta línea teórica. En este estudio el centro de atención no es el paisaje "real", documentado in situ y captado motu propio en instantáneas por nuestros aparatos fotográficos, sino el paisaje lingüístico mediatizado por el ordenador y difundido mediante la World Wide Web. En este sentido, lo que nos interesa es si se ve reflejada y qué manera la hispanidad en Washington D.F. a través del paisaje urbano que nos ofrecen programas especializados como Google Earth y Google Street View. Con este objetivo proponemos un paseo virtual por Washington D.F. y sus diferentes barrios para analizar mediante un estudio de naturaleza cuantitativa y cualitativa, apoyándonos en las herramientas teóricas y metodológicas que ofrecen los estudios de paisaje lingüístico y de la Comunicación Mediada por Ordenadores, de qué manera lo hispano constituye un engranaje del paisaje lingüístico de esta ciudad.
Resumo:
Global transcriptomic and proteomic profiling platforms have yielded important insights into the complex response to ionizing radiation (IR). Nonetheless, little is known about the ways in which small cellular metabolite concentrations change in response to IR. Here, a metabolomics approach using ultraperformance liquid chromatography coupled with electrospray time-of-flight mass spectrometry was used to profile, over time, the hydrophilic metabolome of TK6 cells exposed to IR doses ranging from 0.5 to 8.0 Gy. Multivariate data analysis of the positive ions revealed dose- and time-dependent clustering of the irradiated cells and identified certain constituents of the water-soluble metabolome as being significantly depleted as early as 1 h after IR. Tandem mass spectrometry was used to confirm metabolite identity. Many of the depleted metabolites are associated with oxidative stress and DNA repair pathways. Included are reduced glutathione, adenosine monophosphate, nicotinamide adenine dinucleotide, and spermine. Similar measurements were performed with a transformed fibroblast cell line, BJ, and it was found that a subset of the identified TK6 metabolites were effective in IR dose discrimination. The GEDI (Gene Expression Dynamics Inspector) algorithm, which is based on self-organizing maps, was used to visualize dynamic global changes in the TK6 metabolome that resulted from IR. It revealed dose-dependent clustering of ions sharing the same trends in concentration change across radiation doses. "Radiation metabolomics," the application of metabolomic analysis to the field of radiobiology, promises to increase our understanding of cellular responses to stressors such as radiation.
Resumo:
Meprin and , zinc metalloproteinases, play significant roles in inflammation, including inflammatory bowel disease (IBD), possibly by activating cytokines, like interleukin 1 , interleukin 18, or tumor growth factor . Although a number of potential activators for meprins are known, no endogenous inhibitors have been identified. In this work, we analyzed the inhibitory potential of human plasma and identified bovine fetuin-A as an endogenous meprin inhibitor with a K(i) (inhibition constant) of 4.2 × 10(-5) M for meprin and a K(i) of 1.1 × 10(-6) M meprin . This correlated with data obtained for a fetuin-A homologue from carp (nephrosin inhibitor) that revealed a potent meprin and inhibition (residual activities of 27 and 22%, respectively) at a carp fetuin concentration of 1.5 × 10(-6) M. Human fetuin-A is a negative acute phase protein involved in inflammatory diseases, thus being a potential physiological regulator of meprin activity. We report kinetic studies of fetuin-A with the proteolytic enzymes astacin, LAST, LAST_MAM, trypsin, and chymotrypsin, indeed demonstrating that fetuin-A is a broad-range protease inhibitor. Fetuin-A inhibition of meprin activity was 40 times weaker than that of meprin activity. Therefore, we tested cystatin C, a protein structurally closely related to fetuin-A. Indeed, cystatin C was an inhibitor for human meprin (K(i) = 8.5 × 10(-6) M) but, interestingly, not for meprin . Thus, the identification of fetuin-A and cystatin C as endogenous proteolytic regulators of meprin activity broadens our understanding of the proteolytic network in plasma.
Resumo:
The combination of advanced ultraperformance liquid chromatography coupled with mass spectrometry, chemometrics, and genetically modified mice provide an attractive raft of technologies with which to examine the metabolism of xenobiotics. Here, a reexamination of the metabolism of the food mutagen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), the suspect carcinogen areca alkaloids (arecoline, arecaidine, and arecoline 1-oxide), the hormone supplement melatonin, and the metabolism of the experimental cancer therapeutic agent aminoflavone is presented. In all cases, the metabolic maps of the xenobiotics were considerably enlarged, providing new insights into their toxicology. The inclusion of transgenic mice permitted unequivocal attribution of individual and often novel metabolic pathways to particular enzymes. Last, a future perspective for xenobiotic metabolomics is discussed and its impact on the metabolome is described. The studies reviewed here are not specific to the mouse and can be adapted to study xenobiotic metabolism in any animal species, including humans. The view through the metabolometer is unique and visualizes a metabolic space that contains both established and unknown metabolites of a xenobiotic, thereby enhancing knowledge of their modes of toxic action.