9 resultados para Wind energy, Ireland
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We study the spatial and temporal distribution of hydrogen energetic neutral atoms (ENAs) from the heliosheath observed with the IBEX-Lo sensor of the Interstellar Boundary EXplorer (IBEX) from solar wind energies down to the lowest available energy (15 eV). All available IBEX-Lo data from 2009 January until 2013 June were included. The sky regions imaged when the spacecraft was outside of Earth's magnetosphere and when the Earth was moving toward the direction of observation offer a sufficient signal-to-noise ratio even at very low energies. We find that the ENA ribbon—a 20° wide region of high ENA intensities—is most prominent at solar wind energies whereas it fades at lower energies. The maximum emission in the ribbon is located near the poles for 2 keV and closer to the ecliptic plane for energies below 1 keV. This shift is an evidence that the ENA ribbon originates from the solar wind. Below 0.1 keV, the ribbon can no longer be identified against the globally distributed ENA signal. The ENA measurements in the downwind direction are affected by magnetospheric contamination below 0.5 keV, but a region of very low ENA intensities can be identified from 0.1 keV to 2 keV. The energy spectra of heliospheric ENAs follow a uniform power law down to 0.1 keV. Below this energy, they seem to become flatter, which is consistent with predictions. Due to the subtraction of local background, the ENA intensities measured with IBEX agree with the upper limit derived from Lyα observations.
Resumo:
The near-surface wind and temperature regime at three points in the Atacama Desert of northern Chile is described using two-year multi-level measurements from 80-m towers located in an altitude range between 2100 and 2700 m ASL. The data reveal the frequent development of strong nocturnal drainage flows at all sites. Down-valley nose-shaped wind speed profiles are observed with maximum values occurring at heights between 20 m and 60 m AGL. The flow intensity shows considerable inter-daily variability and a seasonal modulation of maximum speeds, which in the cold season can attain hourly average values larger than 20 m s−1. Turbulent mixing appears significant over the full tower layer, affecting the curvature of the nighttime temperature profile and possibly explaining the observed increase of surface temperatures in the down-valley direction. Nocturnal valley winds and temperatures are weakly controlled by upper-air conditions observed at the nearest aerological station. Estimates of terms in the momentum budget for the development and the quasi-stationary phases of the down-valley flows suggest that the pressure gradient force due to the near-surface cooling along the sloping valley axes plays an important role in these drainage flows. A scale for the jet nose height of equilibrium turbulent down-slope jets is proposed, based on surface friction velocity and surface inversion intensity. At one of the sites this scale explains about 70% of the case-to-case observed variance of jet nose heights. Further modeling and observational work is needed, however, in order to better define the dynamics, extent and turbulence structure of this flow system, which has significant wind-energy, climatic and environmental implications.
Resumo:
The solar wind continuously flows out from the Sun, filling interplanetary space and directly interacting with the surfaces of small planetary bodies and other objects throughout the solar system. A significant fraction of these ions backscatter from the surface as energetic neutral atoms (ENAs). The first observations of these ENA emissions from the Moon were recently reported from the Interstellar Boundary Explorer (IBEX). These observations yielded a lunar ENA albedo of ˜10% and showed that the Moon reflects ˜150 metric tons of neutral hydrogen per year. More recently, a survey of the first 2.5 years of IBEX observations of lunar ENAs was conducted for times when the Moon was in the solar wind. Here, we present the first IBEX ENA observations when the Moon is inside the terrestrial magnetosheath and compare them with observations when the Moon is in the solar wind. Our analysis shows that: (1) the ENA intensities are on average higher when the Moon is in the magnetosheath, (2) the energy spectra are similar above ~0.6* solar wind energy but below there are large differences of the order of a factor of 10, (3) the energy spectra resemble a power law with a "hump" at ˜0.6 * solar wind energy, and (4) this "hump" is broader when the Moon is in the magnetosheath. We explore potential scenarios to explain the differences, namely the effects of the topography of the lunar surface and the consequences of a very different Mach number in the solar wind versus in the magnetosheath.
Resumo:
Fatal falls from great height are a frequently encountered setting in forensic pathology. They present--by virtue of a calculable energy transmission to the body--an ideal model for the assessment of the effects of blunt trauma to a human body. As multislice computed tomography (MSCT) has proven not only to be invaluable in clinical examinations, but also to be a viable tool in post-mortem imaging, especially in the field of osseous injuries, we performed a MSCT scan on 20 victims of falls from great height. We hereby detected fractures and their distributions were compared with the impact energy. Our study suggests a marked increase of extensive damage to different body regions at about 20 kJ and more. The thorax was most often affected, regardless of the amount of impacting energy and the primary impact site. Cranial fracture frequency displayed a biphasic distribution with regard to the impacting energy; they were more frequent in energies of less than 10, and more than 20 kJ, but rarer in the intermediate energy group, namely that of 10-20 kJ.
Resumo:
The Plasma and Supra-Thermal Ion Composition (PLASTIC) instrument is one of four experiment packages on board of the two identical STEREO spacecraft A and B, which were successfully launched from Cape Canaveral on 26 October 2006. During the two years of the nominal STEREO mission, PLASTIC is providing us with the plasma characteristics of protons, alpha particles, and heavy ions. PLASTIC will also provide key diagnostic measurements in the form of the mass and charge state composition of heavy ions. Three measurements (E/qk, time of flight, ESSD) from the pulse height raw data are used to characterize the solar wind ions from the solar wind sector, and part of the suprathermal particles from the wide-angle partition with respect to mass, atomic number and charge state. In this paper, we present a new method for flight data analysis based on simulations of the PLASTIC response to solar wind ions. We present the response of the entrance system / energy analyzer in an analytical form. Based on stopping power theory, we use an analytical expression for the energy loss of the ions when they pass through a thin carbon foil. This allows us to model analytically the response of the time of flight mass spectrometer to solar wind ions. Thus we present a new version of the analytical response of the solid state detectors to solar wind ions. Various important parameters needed for our models were derived, based on calibration data and on the first flight measurements obtained from STEREO-A. We used information from each measured event that is registered in full resolution in the Pulse Height Analysis words and we derived a new algorithm for the analysis of both existing and future data sets of a similar nature which was tested and works well. This algorithm allows us to obtain, for each measured event, the mass, atomic number and charge state in the correct physical units. Finally, an important criterion was developed for filtering our Fe raw flight data set from the pulse height data without discriminating charge states.
Resumo:
The solar wind continuously flows out from the Sun and directly interacts with the surfaces of dust and airless planetary bodies throughout the solar system. A significant fraction of solar wind ions reflect from an object's surface as energetic neutral atoms (ENAs). ENA emission from the Moon was first observed during commissioning of the Interstellar Boundary Explorer (IBEX) mission on 3 December 2008. We present the analysis of 10 additional IBEX observations of the Moon while it was illuminated by the solar wind. For the viewing geometry and energy range (> 250 eV) of the IBEX-Hi ENA imager, we find that the spectral shape of the ENA emission from the Moon is well-represented by a linearly decreasing flux with increasing energy. The fraction of the incident solar wind ions reflected as ENAs, which is the ENA albedo and defined quantitatively as the ENA reflection coefficient RN, depends on the incident solar wind speed, ranging from ~0.2 for slow solar wind to ~0.08 for fast solar wind. The average energy per incident solar wind ion that is reflected to space is 30 eV for slow solar wind and 45 eV for fast solar wind. Once ionized, these ENAs can become pickup ions in the solar wind with a unique spectral signature that reaches 3vSW. These results apply beyond the solar system; the reflection process heats plasmas that have significant bulk flow relative to interstellar dust and cools plasmas having no net bulk flow relative to the dust.
Resumo:
The Moon appears bright in the sky as a source of energetic neutral atoms (ENAs). These ENAs have recently been imaged over a broad energy range both from near the lunar surface, by India's Chandrayaan-1 mission (CH-1), and from a much more distant Earth orbit by NASA's Interstellar Boundary Explorer (IBEX) satellite. Both sets of observations have indicated that a relatively large fraction of the solar wind is reflected from the Moon as energetic neutral hydrogen. CH-1's angular resolution over different viewing angles of the lunar surface has enabled measurement of the emission as a function of angle. IBEX in contrast views not just a swath but a whole quadrant of the Moon as effectively a single pixel, as it subtends even at the closest approach no more than a few degrees on the sky. Here we use the scattering function measured by CH-1 to model global lunar ENA emission and combine these with IBEX observations. The deduced global reflection is modestly larger (by a factor of 1.25) when the angular scattering function is included. This provides a slightly updated IBEX estimate of AH=0.11±0.06 for the global neutralized albedo, which is ˜25% larger than the previous values of 0.09±0.05, based on an assumed uniform scattering distribution.
Resumo:
As Rosetta was orbiting comet 67P/Churyumov-Gerasimenko, the Ion and Electron Sensor detected negative particles with angular distributions like those of the concurrently measured solar wind protons but with fluxes of only about 10% of the proton fluxes and energies of about 90% of the proton energies. Using well-known cross sections and energy-loss data, it is determined that the fluxes and energies of the negative particles are consistent with the production of H- ions in the solar wind by double charge exchange with molecules in the coma.