16 resultados para Wildlife research

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlamydophila (C.) abortus is the most common infectious abortigenic agent in small domestic ruminants in Switzerland. In contrast, the knowledge about chlamydiae in wild ruminants is scarce. As interactions between livestock and Alpine ibex (Capra i. ibex) occur on alpine pastures, the question raises if wild ruminants could play a role as carriers of chlamydiae. Thus, we investigated the prevalence of chlamydiae in Alpine ibex in Switzerland. In total, 624 sera, 676 eye swabs, 84 organ samples and 51 faecal samples from 664 ibex were investigated. Serum samples were tested by two commercial ELISA kits specific for C. abortus. Eye swabs, organs and faecal samples were examined by a Chlamydiaceae-specific real-time polymerase chain reaction (PCR). Positive cases were further investigated by the ArrayTube (AT) microarray method for chlamydial species determination. Of 624 serum samples investigated, 612 animals were negative, whereas nine sera (1.5%) reacted positively in one of the two tests and three sera showed an inconclusive result. Eye swabs of seven out of 412 ibex (1.7%) were tested positive for Chlamydiaceae by real-time PCR. By AT microarray, Chlamydophila (C.) pecorum was identified in two animals, Chlamydophila (C.) pneumoniae was detected in one animal and a mixed infection with C. abortus and C. pecorum was found in four animals. Organs and faecal samples were all negative by real-time PCR analysis. In summary, we conclude that C. abortus is not a common infectious agent in the Swiss ibex population. To our knowledge, this is the first description of C. pneumoniae in ibex. Further studies are necessary to elucidate the situation in other species of wild ruminants as chamois (Rupicapra r. rupicapra), red deer (Cervus elaphus) and roe deer (Capreolus c. capreolus) in Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infectious keratoconjunctivitis (IKC) caused by Mycoplasma conjunctivae is a widespread ocular affection of free-ranging Caprinae in the Alpine arc. Along with host and pathogen characteristics, it has been hypothesized that environmental factors such as UV light are involved in the onset and course of the disease. This study aimed at evaluating the role of topographic features as predisposing or aggravating factors for IKC in Alpine chamois (Rupicapra rupicapra rupicapra) and Alpine ibex (Capra ibex ibex). Geospatial analysis was performed to assess the effect of aspect (northness) and elevation on the severity of the disease as well as on the mycoplasmal load in the eyes of affected animals, using data from 723 ibex and chamois (583 healthy animals, 105 IKC-affected animals, and 35 asymptomatic carriers of M. conjunctivae), all sampled in the Swiss Alps between 2008 and 2010. An influence of northness was not found, except that ibex with moderate and severe signs of IKC seem to prefer more north-oriented slopes than individuals without corneal lesions, possibly hinting at a sunlight sensitivity consequent to the disease. In contrast, results suggest that elevation influences the disease course in both ibex and chamois, which could be due to altitude-associated environmental conditions such as UV radiation, cold, and dryness. The results of this study support the hypothesis that environmental factors may play a role in the pathogenesis of IKC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a fast changing world with growing concerns about biodiversity loss and an increasing number of animal and human diseases emerging from wildlife, the need for effective wildlife health investigations including both surveillance and research is now widely recognized. However, procedures applicable to and knowledge acquired from studies related to domestic animal and human health can be on partly extrapolated to wildlife. This article identifies requirements and challenges inherent in wildlife health investigations, reviews important definitions and novel health investigation methods, and proposes tools and strategies for effective wildlife health surveillance programs. Impediments to wildlife health investigations are largely related to zoological, behavioral and ecological characteristics of wildlife populations and to limited access to investigation materials. These concerns should not be viewed as insurmountable but it is imperative that they are considered in study design, data analysis and result interpretation. It is particularly crucial to remember that health surveillance does not begin in the laboratory but in the fields. In this context, participatory approaches and mutual respect are essential. Furthermore, interdisciplinarity and open minds are necessary because a wide range of tools and knowledge from different fields need to be integrated in wildlife health surveillance and research. The identification of factors contributing to disease emergence requires the comparison of health and ecological data over time and among geographical regions. Finally, there is a need for the development and validation of diagnostic tests for wildlife species and for data on free-ranging population densities. Training of health professionals in wildlife diseases should also be improved. Overall, the article particularly emphasizes five needs of wildlife health investigations: communication and collaboration; use of synergies and triangulation approaches; investments for the long term; systematic collection of metadata; and harmonization of definitions and methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infectious diseases result from the interactions of host, pathogens, and, in the case of vector-borne diseases, also vectors. The interactions involve physiological and ecological mechanisms and they have evolved under a given set of environmental conditions. Environmental change, therefore, will alter host-pathogen-vector interactions and, consequently, the distribution, intensity, and dynamics of infectious diseases. Here, we review how climate change may impact infectious diseases of aquatic and terrestrial wildlife. Climate change can have direct impacts on distribution, life cycle, and physiological status of hosts, pathogens and vectors. While a change in either host, pathogen or vector does not necessarily translate into an alteration of the disease, it is the impact of climate change on the interactions between the disease components which is particularly critical for altered disease risks. Finally, climate factors can modulate disease through modifying the ecological networks host-pathogen-vector systems are belonging to, and climate change can combine with other environmental stressors to induce cumulative effects on infectious diseases. Overall, the influence of climate change on infectious diseases involves different mechanisms, it can be modulated by phenotypic acclimation and/or genotypic adaptation, it depends on the ecological context of the host-pathogen-vector interactions, and it can be modulated by impacts of other stressors. As a consequence of this complexity, non-linear responses of disease systems under climate change are to be expected. To improve predictions on climate change impacts on infectious disease, we suggest that more emphasis should be given to the integration of biomedical and ecological research for studying both the physiological and ecological mechanisms which mediate climate change impacts on disease, and to the development of harmonized methods and approaches to obtain more comparable results, as this would support the discrimination of case-specific versus general mechanisms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The value of wildlife has long been ignored or under-rated. However, growing concerns about biodiversity loss and emerging diseases of wildlife origin have enhanced debates about the importance of wildlife. Wildlife-related diseases are viewed through these debates as a potential threat to wildlife conservation and domestic animal and human health. This article provides an overview of the values we place on wildlife (positive: socio-cultural, nutritional, economic, ecological; and negative: damages, health issues) and of the significance of diseases for biodiversity conservation. It shows that the values of wildlife, the emergence of wildlife diseases and biodiversity conservation are closely linked. The article also illustrates why investigations into wildlife diseases are now recognized as an integral part of global health issues. The modern One Health concept requires multi-disciplinary research groups including veterinarians, human physicians, ecologists and other scientists collaborating towards a common goal: prevention of disease emergence and preservation of ecosystems, both of which are essential to protect human life and well-being.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for wildlife health surveillance has become increasingly recognized. However, comprehensive programs which cover a wide spectrum of species, pathogens and geographic areas are still lacking in most European countries and practical examples of systems in place remain scarce. This article provides an overview of the organization of wildlife health surveillance in Switzerland, with a focus on the development, current strategies and the activities of the national program carried out by the Centre for Fish and Wildlife Health (FIWI), University of Bern. This documentation may stimulate on-going discussions on the design and development of national wildlife health surveillance programs in other countries. Investigations into wildlife health in Switzerland date back to the 1950s. The FIWI acts as a national competence center for wildlife diseases on mandate of the Swiss federal authorities. The mandate includes four main activities: disease diagnostics, research, consulting and teaching. In line with this, the FIWI has made continuous efforts to strengthen a national network of field partners and implemented strategies to facilitate long-term and metastudies.