77 resultados para White blood cells
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Previous observations suggested recruitment of platelets (PLTs) and white blood cells (WBCs) during plateletpheresis and recruitment of hematopoietic progenitor cells (HPCs) by HPC apheresis. Quantification of recruitment helps to optimize yields and safety of these procedures; detection of WBC or HPC recruitment during plateletpheresis may further elucidate the mechanisms.
Resumo:
In this single-center, cross-sectional study, we evaluated 44 very long-term survivors with a median follow-up of 17.5 years (range, 11-26 years) after hematopoietic stem cell transplantation. We assessed the telomere length difference in human leukocyte antigen-identical donor and recipient sibling pairs and searched for its relationship with clinical factors. The telomere length (in kb, mean +/- SD) was significantly shorter in all recipient blood cells compared with their donors' blood cells (P < .01): granulocytes (6.5 +/- 0.9 vs 7.1 +/- 0.9), naive/memory T cells (5.7 +/- 1.2 vs 6.6 +/- 1.2; 5.2 +/- 1.0 vs 5.7 +/- 0.9), B cells (7.1 +/- 1.1 vs 7.8 +/- 1.1), and natural killer/natural killer T cells (4.8 +/- 1.0 vs 5.6 +/- 1.3). Chronic graft-versus-host disease (P < .04) and a female donor (P < .04) were associated with a greater difference in telomere length between donor and recipient. Critically short telomeres have been described in degenerative diseases and secondary malignancies. If this hypothesis can be confirmed, identification of recipients at risk for cellular senescence could become part of monitoring long-term survivors after hematopoietic stem cell transplantation.
Resumo:
The herb Echinacea purpurea, also called purple coneflower, is regarded as an immune modulator. This study examined changes in cytokine production in blood samples from 30 volunteers before and during 8-day oral administration with an ethanolic extract of fresh Echinacea purpurea (Echinaforce(®)). Daily blood samples were ex vivo stimulated by LPS/SEB or Zymosan and analysed for a series of cytokines and haematological and metabolic parameters. Treatment reduced the proinflammatory mediators TNF-α and IL-1β by up to 24% (p<0.05) and increased anti-inflammatory IL-10 levels by 13% (p<0.05) in comparison to baseline. This demonstrated a substantial overall anti-inflammatory effect of Echinaforce(®) for the whole group (n=28). Chemokines MCP-1 and IL-8 were upregulated by 15% in samples from subjects treated with Echinaforce(®) (p<0.05). An analysis of a subgroup of volunteers who showed low pre-treatment levels of the cytokines MCP-1, IL-8, IL-10 or IFN-γ (n=8) showed significant stimulation of these factors upon Echinaforce(®) treatment (30-49% increases; p<0.05), whereas the levels in subjects with higher pre-treatment levels remained unaffected. We chose the term "adapted immune-modulation" to describe this observation. Volunteers who reported high stress levels (n=7) and more than 2 colds per year experienced a significant transient increase in IFN-γ upon Echinaforce(®) treatment (>50%). Subjects with low cortisol levels (n=11) showed significant down-regulation of the acute-phase proteins IL1-β, IL-6, IL-12 and TNF-α by Echinaforce(®) (range, 13-25%), while subjects with higher cortisol levels showed no such down-regulation. This is the first ex vivo study to demonstrate adapted immune-modulation by an Echinacea preparation. While Echinaforce(®) did not affect leukocyte counts, we speculate that the underlying therapeutic mechanism is based on differential multi-level modulation of the responses of the different types of leukocytes. Echinaforce(®) thus regulates the production of chemokines and cytokines according to current immune status, such as responsiveness to exogenous stimuli, susceptibility to viral infection and exposure to stress.
Resumo:
So far, little is known about the interaction of nanoparticles with lung cells, the entering of nanoparticles, and their transport through the blood stream to other organs. The entering and localization of different nanoparticles consisting of differing materials and of different charges were studied in human red blood cells. As these cells do not have any phagocytic receptors on their surface, and no actinmyosin system, we chose them as a model for nonphagocytic cells to study how nanoparticles penetrate cell membranes. We combined different microscopic techniques to visualize fine and nanoparticles in red blood cells: (I) fluorescent particles were analyzed by laser scanning microscopy combined with digital image restoration, (II) gold particles were analyzed by conventional transmission electron microscopy and energy filtering transmission electron microscopy, and (III) titanium dioxide particles were analyzed by energy filtering transmission electron microscopy. By using these differing microscopic techniques we were able to visualize and detect particles < or = 0.2 microm and nanoparticles in red blood cells. We found that the surface charge and the material of the particles did not influence their entering. These results suggest that particles may penetrate the red blood cell membrane by a still unknown mechanism different from phagocytosis and endocytosis.
Resumo:
CD45, also called leucocyte common antigen is a transmembrane protein tyrosine phosphatase on the surface of nearly all white blood cells and has a functional role in signal transduction. In the brain, the expression of CD45 can be used to distinguish microglial cells with a characteristic phenotype of CD11b/c+ and CD45(low) from other central nervous system (CNS) macrophages which show an expression of CD11b/c+ and CD45(high). In the course of pathological changes in the CNS, microglia in rodents is known to readily upregulate expression of various surface molecules, such as CD45. Understanding the mechanisms that regulate expression of surface molecules is essential to study the pathogenesis of CNS diseases. In the present study, the expression of CD45 on microglia of 42 dogs was examined ex vivo by means of flow cytometry. The dogs were classified in two groups according to the histopathological diagnosis in the CNS. All dogs without changes in the CNS (group I; n = 22) only showed low percentages of CD45+ microglial cells. In group II consisting of 20 dogs with different intracranial diseases varying results were obtained. Thirteen dogs showed a low percentage of CD45+ microglial cells whereas seven dogs exhibited high percentages of microglial cells expressing CD45. Evaluation of expression intensity in these seven dogs revealed two subpopulations of CD45+ microglial cells: a large subpopulation with CD45(low) and a small subpopulation with CD45(high). The expression intensity of CD45(high) was comparable with that of canine monocytes. It was attempted to correlate these findings to age of the animals, underlying disease, duration of clinical signs, medical treatment, occurrence of seizure activity and the expression of other surface molecules. It appeared that dogs with high percentages of CD45+ suffered from long-lasting CNS disease with seizures. In future studies, the reason and consequences for upregulated CD45 in long-lasting CNS diseases has to be further evaluated.
Resumo:
Although associated with adverse outcomes in other cardiovascular diseases, the prognostic value of an elevated white blood cell (WBC) count, a marker of inflammation and hypercoagulability, is uncertain in patients with pulmonary embolism (PE). We therefore sought to assess the prognostic impact of the WBC in a large, state-wide retrospective cohort of patients with PE. We evaluated 14,228 patient discharges with a primary diagnosis of PE from 186 hospitals in Pennsylvania. We used random-intercept logistic regression to assess the independent association between WBC count levels at the time of presentation and mortality and hospital readmission within 30 days, adjusting for patient and hospital characteristics. Patients with an admission WBC count <5.0, 5.0-7.8, 7.9-9.8, 9.9-12.6, and >12.6 × 10(9) /L had a cumulative 30-day mortality of 10.9%, 6.2%, 5.4%, 8.3%, and 16.3% (P < 0.001), and a readmission rate of 17.6%, 11.9%, 10.9%, 11.5%, and 15.0%, respectively (P < 0.001). Compared with patients with a WBC count 7.9-9.8 × 10(9) /L, adjusted odds of 30-day mortality were significantly greater for patients with a WBC count <5.0 × 10(9) /L (odds ratio [OR] 1.52, 95% confidence interval [CI] 1.14-2.03), 9.9-12.6 × 10(9) /L (OR 1.55, 95% CI 1.26-1.91), or >12.6 × 10(9) /L (OR 2.22, 95% CI 1.83-2.69), respectively. The adjusted odds of readmission were also significantly increased for patients with a WBC count <5.0 × 10(9) /L (OR 1.34, 95% CI 1.07-1.68) or >12.6 × 10(9) /L (OR 1.29, 95% CI 1.10-1.51). In patients presenting with PE, WBC count is an independent predictor of short-term mortality and hospital readmission.
Resumo:
We have performed microfluidic experiments with erythrocytes passing through a network of microchannels of 20–25 μm width and 5 μm of height. Red blood cells (RBCs) were flowing in countercurrent directions through microchannels connected by μm pores. Thereby, we have observed interesting flow dynamics. All pores were blocked by erythrocytes. Some erythrocytes have passed through pores, depending on the channel size and cell elasticity. Many RBCs split into two or more smaller parts. Two types of splits were observed. In one type, the lipid bilayer and spectrin network were cut at the same time. In the second type, the lipid bilayer reconnected, but the part of spectrin network stayed outside the cell forming a rope like structure, which could eventually break. The microporous membrane results in multiple breakups of the cells, which can have various clinical implications, e.g., glomerulus hematuria and anemia of patients undergoing dialysis. The cell breakup procedure is similar to the one observed in the droplet breakage of viscoelastic liquids in confinement.
Resumo:
SUMMARY: BACKGROUND: Recruitment of platelets (PLT) during donor PLT apheresis may facilitate the harvest of multiple units within a single donation. METHODS: We compared two PLT apheresis procedures (Amicus and Trima Accel) in a prospective, randomized, paired cross-over study in 60 donors. The 120 donations were compared for depletion of circulating PLT in the donors, PLT yields and PLT recruitment. A recruitment was defined as ratio of total PLT yield and donor PLT depletion > 1. RESULTS: Despite comparable differences of pre- and post-apheresis PLT counts (87 × 10(9)/l in Trima Accel vs. 92 × 10(9)/l in Amicus, p = 0.383), PLT yields were higher with Trima Accel (7.48 × 10(11) vs. 6.06 × 10(11), p < 0.001), corresponding to a higher PLT recruitment (1.90 vs. 1.42, p < 0.001). We observed a different increase of WBC counts after aphereses, which was more pronounced with Trima Accel than with Amicus (1.30 × 10(9)/l vs. 0.46 × 10(9)/l, p < 0.001). CONCLUSION: Both procedures induced PLT recruitment. This was higher in Trima Accel, contributing to a higher yield in spite of a comparable depletion of circulating PLT in the donors. This recruitment facilitates the harvest of multiple units within a single donation and seems to be influenced by the procedure utilized. The different increases of circulating donor white blood cells after donation need further investigation.
Resumo:
OBJECTIVE: To study if telomere length can be used as a surrogate marker for the mitotic history in normal and affected hematopoietic cells from patients with paroxysmal nocturnal hemoglobinuria (PNH). METHODS: The telomere length was measured by automated multicolor flow fluorescence in situ hybridization in glycosyl-phosphatidyl-inositol anchored protein (GPI)-negative and GPI-positive peripheral blood leukocytes. Eleven patients were studied, two with predominantly hemolytic PNH and nine with PNH associated with marrow failure. RESULTS: Telomere length in GPI-negative cells was significantly shorter than in GPI-positive cells of the same patient (p < 0.01, n = 11). The difference in telomere length (telomere length in GPI-positive minus telomere length in GPI-negative cells) correlated with the percentage of GPI-negative white blood cells. CONCLUSION: Our results support the hypothesis that telomere length is correlated to the replicative history of GPI-positive and GPI-negative cells and warrant further studies of telomere length in relation to disease progression in PNH.
Resumo:
Objectives: The goal of the present study was to elucidate the contribution of the newly recognized virulence factor choline to the pathogenesis of Streptococcus pneumoniae in an animal model of meningitis. Results: The choline containing strain D39Cho(-) and its isogenic choline-free derivative D39Cho(-)licA64 -each expressing the capsule polysaccharide 2 - were introduced intracisternally at an inoculum size of 10(3) CFU into 11 days old Wistar rats. During the first 8 h post infection both strains multiplied and stimulated a similar immune response that involved expression of high levels of proinflammatory cytokines, the matrix metalloproteinase 9 (MMP-9), IL-10, and the influx of white blood cells into the CSF. Virtually identical immune response was also elicited by intracisternal inoculation of 10(7) CFU equivalents of either choline-containing or choline-free cell walls. At sampling times past 8 h strain D39Cho(-) continued to replicate accompanied by an intense inflammatory response and strong granulocytic pleiocytosis. Animals infected with D39Cho(-) died within 20 h and histopathology revealed brain damage in the cerebral cortex and hippocampus. In contrast, the initial immune response generated by the choline-free strain D39Cho(-)licA64 began to decline after the first 8 h accompanied by elimination of the bacteria from the CSF in parallel with a strong WBC response peaking at 8 h after infection. All animals survived and there was no evidence for brain damage. Conclusion: Choline in the cell wall is essential for pneumococci to remain highly virulent and survive within the host and establish pneumococcal meningitis.
Resumo:
GOAL OF THE WORK: Anemia is a common side effect of chemotherapy. Limited information exists about its incidence and risk factors. The objective of this study was to evaluate the incidence of anemia and risk factors for anemia occurrence in patients with early breast cancer who received adjuvant chemotherapy. MATERIALS AND METHODS: We evaluated risk factors for anemia in pre- and post/perimenopausal patients with lymph node-positive early breast cancer treated with adjuvant chemotherapy in two randomized trials. All patients received four cycles of doxorubicin and cyclophosphamide (AC) followed by three cycles of cyclophosphamide, methotrexate, fluorouracil (CMF). Anemia incidence was related to baseline risk factors. Multivariable analysis used logistic and Cox regression. MAIN RESULTS: Among the 2,215 available patients, anemia was recorded in 11% during adjuvant chemotherapy. Grade 2 and 3 anemia occurred in 4 and 1% of patients, respectively. Pretreatment hemoglobin and white blood cells (WBC) were significant predictors of anemia. Adjusted odds ratios (logistic regression) comparing highest versus lowest quartiles were 0.18 (P < 0.0001) for hemoglobin and 0.52 (P = 0.0045) for WBC. Age, surgery type, platelets, body mass index, and length of time from surgery to chemotherapy were not significant predictors. Cox regression results looking at time to anemia were similar. CONCLUSIONS: Moderate or severe anemia is rare among patients treated with AC followed by CMF. Low baseline hemoglobin and WBC are associated with a higher risk of anemia.
Resumo:
We present a case of a pathologic humerus fracture in a patient with the initial diagnosis of Gaucher's disease, which is the most frequent form of lipidosis transmitted as an autosomal recessive trait. It often results in orthopaedic complications with pain, osteonecrosis, fractures and joint infractions. If there is cause for suspicion, beta-glucocerebrosidase in white blood cells should be measured because of the important consequences for treatment. Therapy with a modified enzyme is effective in managing the disease.
Resumo:
BACKGROUND: Intravascular ultrasound of drug-eluting stent (DES) thrombosis (ST) reveals a high incidence of incomplete stent apposition (ISA) and vessel remodeling. Autopsy specimens of DES ST show delayed healing and hypersensitivity reactions. The present study sought to correlate histopathology of thrombus aspirates with intravascular ultrasound findings in patients with very late DES ST. METHODS AND RESULTS: The study population consisted of 54 patients (28 patients with very late DES ST and 26 controls). Of 28 patients with very late DES ST, 10 patients (1020+/-283 days after implantation) with 11 ST segments (5 sirolimus-eluting stents, 5 paclitaxel-eluting stents, 1 zotarolimus-eluting stent) underwent both thrombus aspiration and intravascular ultrasound investigation. ISA was present in 73% of cases with an ISA cross-sectional area of 6.2+/-2.4 mm(2) and evidence of vessel remodeling (index, 1.6+/-0.3). Histopathological analysis showed pieces of fresh thrombus with inflammatory cell infiltrates (DES, 263+/-149 white blood cells per high-power field) and eosinophils (DES, 20+/-24 eosinophils per high-power field; sirolimus-eluting stents, 34+/-28; paclitaxel-eluting stents, 6+/-6; P for sirolimus-eluting stents versus paclitaxel-eluting stents=0.09). The mean number of eosinophils per high-power field was higher in specimens from very late DES ST (20+/-24) than in those from spontaneous acute myocardial infarction (7+/-10), early bare-metal stent ST (1+/-1), early DES ST (1+/-2), and late bare-metal stent ST (2+/-3; P from ANOVA=0.038). Eosinophil count correlated with ISA cross-sectional area, with an average increase of 5.4 eosinophils per high-power field per 1-mm(2) increase in ISA cross-sectional area. CONCLUSIONS: Very late DES thrombosis is associated with histopathological signs of inflammation and intravascular ultrasound evidence of vessel remodeling. Compared with other causes of myocardial infarction, eosinophilic infiltrates are more common in thrombi harvested from very late DES thrombosis, particularly in sirolimus-eluting stents, and correlate with the extent of stent malapposition.
Resumo:
Chemokines are a superfamily of small chemotactic cytokines, which interact with their G-protein-coupled receptors. These interactions regulate multiple physiological functions, particularly tissue architecture and compartment-specific migration of white blood cells. It has been found that the chemokine/chemokine receptor system has been utilized by cancer cells for migration and metastasis. The chemokine receptor CCR6 is expressed in colorectal cancer and several other cancer types, and stimulation by its physiological chemokine ligand CCL20 has been reported to promote cancer cell proliferation and migration in vitro. Moreover, CCR6/CCL20 interactions apparently play a role in organ selective liver metastasis of colorectal cancer. Here, we review the literature on expression patterns of CCL20 and CCR6 and their physiological interactions as well as the currently presumed role of CCR6 and CCL20 in the formation of colorectal cancer liver metastasis, providing a potential basis for novel treatment strategies.
Resumo:
The vast majority of chronic myeloid leukemia patients express a BCR-ABL1 fusion gene mRNA encoding a 210 kDa tyrosine kinase which promotes leukemic transformation. A possible differential impact of the corresponding BCR-ABL1 transcript variants e13a2 ("b2a2") and e14a2 ("b3a2") on disease phenotype and outcome is still a subject of debate. A total of 1105 newly diagnosed imatinib-treated patients were analyzed according to transcript type at diagnosis (e13a2, n=451; e14a2, n=496; e13a2+e14a2, n=158). No differences regarding age, sex, or Euro risk score were observed. A significant difference was found between e13a2 and e14a2 when comparing white blood cells (88 vs. 65 × 10(9)/L, respectively; P<0.001) and platelets (296 vs. 430 × 10(9)/L, respectively; P<0.001) at diagnosis, indicating a distinct disease phenotype. No significant difference was observed regarding other hematologic features, including spleen size and hematologic adverse events, during imatinib-based therapies. Cumulative molecular response was inferior in e13a2 patients (P=0.002 for major molecular response; P<0.001 for MR4). No difference was observed with regard to cytogenetic response and overall survival. In conclusion, e13a2 and e14a2 chronic myeloid leukemia seem to represent distinct biological entities. However, clinical outcome under imatinib treatment was comparable and no risk prediction can be made according to e13a2 versus e14a2 BCR-ABL1 transcript type at diagnosis. (clinicaltrials.gov identifier:00055874).