14 resultados para White Coat Ceremony Inaugural Class Invitation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adults with ambulatory hypertension or white coat hypertension (WCH) display abnormal cardiovascular rhythms. We studied cardiovascular rhythms by Fourier analysis of 24-h ambulatory blood pressure (BP) measurement profiles in 129 hypertensive children, 54 children with WCH, and 146 age-, height-, and gender-matched healthy subjects. The day/night mean arterial pressure ratio was lower in hypertensive and patients with WCH compared with controls (1.13 versus 1.16 versus 1.21, respectively; p < 0.0001). Eighty-five percent of controls were dippers compared with 74% of WCH (n.s.) and 64% of patients with ambulatory hypertension (p < 0.0001). The prevalence of 24-h rhythms was similar among the groups, but prevalence of 12-h BP rhythms was increased in hypertensive (67%) and WCH (72%) compared with controls (51%, p < 0.0001). The amplitudes of the 24-, 8-, and 6-h BP rhythms were reduced in hypertensive and WCH compared with controls (p < 0.05). Hypertensive and patients with WCH displayed delayed 24-, 12-, 8-, 6-h acrophases in comparison with controls (p < 0.05). In conclusion, hypertensive children exhibit abnormal cardiovascular rhythmicity compared with controls, especially a higher prevalence of nondipping compared with normotensive children. Abnormalities in patients with WCH are intermediate between healthy children and patients with ambulatory hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective We investigated factors associated with masked and white-coat hypertension in a Swiss population-based sample. Methods The Swiss Kidney Project on Genes in Hypertension is a family-based cross-sectional study. Office and 24-hour ambulatory blood pressure were measured using validated devices. Masked hypertension was defined as office blood pressure<140/90 mmHg and daytime ambulatory blood pressure≥135/85 mmHg. White-coat hypertension was defined as office blood pressure≥140/90 mmHg and daytime ambulatory blood pressure<135/85 mmHg. Mixed-effect logistic regression was used to examine the relationship of masked and white-coat hypertension with associated factors, while taking familial correlations into account. High-normal office blood pressure was defined as systolic/diastolic blood pressure within the 130–139/85–89 mmHg range. Results Among the 652 participants included in this analysis, 51% were female. Mean age (±SD) was 48 (±18) years. The proportion of participants with masked and white coat hypertension was respectively 15.8% and 2.6%. Masked hypertension was associated with age (odds ratio (OR) = 1.02, p = 0.012), high-normal office blood pressure (OR = 6.68, p<0.001), and obesity (OR = 3.63, p = 0.001). White-coat hypertension was significantly associated with age (OR = 1.07, p<0.001) but not with education, family history of hypertension, or physical activity. Conclusions Our findings suggest that physicians should consider ambulatory blood pressure monitoring for older individuals with high-normal office blood pressure and/or who are obese.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from approximately 50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the approximately 82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White spotting phenotypes have been intensively studied in horses, and although similar phenotypes occur in the donkey, little is known about the molecular genetics underlying these patterns in donkeys. White spotting in donkeys can range from only a few white areas to almost complete depigmentation and is characterised by a loss of pigmentation usually progressing from a white spot in the hip area. Completely white-born donkeys are rare, and the phenotype is characterised by the complete absence of pigment resulting in pink skin and a white coat. A dominant mode of inheritance has been demonstrated for spotting in donkeys. Although the mode of inheritance for the completely white phenotype in donkeys is not clear, the phenotype shows similarities to dominant white in horses. As variants in the KIT gene are known to cause a range of white phenotypes in the horse, we investigated the KIT gene as a potential candidate gene for two phenotypes in the donkey, white spotting and white. A mutation analysis of all 21 KIT exons identified a missense variant in exon 4 (c.662A>C; p.Tyr221Ser) present only in a white-born donkey. A second variant affecting a splice donor site (c.1978+2T>A) was found exclusively in donkeys with white spotting. Both variants were absent in 24 solid-coloured controls. To the authors' knowledge, this is the first study investigating genetic mechanisms underlying white phenotypes in donkeys. Our results suggest that two independent KIT alleles are probably responsible for white spotting and white in donkeys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Little information is available on the early course of hypertension in type 1 diabetes. The aim of our study, therefore, was to document circadian blood pressure profiles in patients with a diabetes duration of up to 20 years and relate daytime and nighttime blood pressure to duration of diabetes, BMI, insulin therapy, and HbA1c. RESEARCH DESIGN AND METHODS Ambulatory profiles of 24-h blood pressure were recorded in 354 pediatric patients with type 1 diabetes (age 14.6 +/- 4.2 years, duration of diabetes 5.6 +/- 5.0 years, follow-up for up to 9 years). A total of 1,011 profiles were available for analysis from patients not receiving antihypertensive medication. RESULTS Although daytime mean systolic pressure was significantly elevated in diabetic subjects (+3.1 mmHg; P < 0.0001), daytime diastolic pressure was not different from from the height- and sex-adjusted normal range (+0.1 mmHg, NS). In contrast, both systolic and diastolic nighttime values were clearly elevated (+7.2 and +4.2 mmHg; P < 0.0001), and nocturnal dipping was reduced (P < 0.0001). Systolic blood pressure was related to overweight in all patients, while diastolic blood pressure was related to metabolic control in young adults. Blood pressure variability was significantly lower in girls compared with boys (P < 0.01). During follow-up, no increase of blood pressure was noted; however, diastolic nocturnal dipping decreased significantly (P < 0.03). Mean daytime blood pressure was significantly related to office blood pressure (r = +0.54 for systolic and r = +0.40 for diastolic pressure); however, hypertension was confirmed by ambulatory blood pressure measurement in only 32% of patients with elevated office blood pressure. CONCLUSIONS During the early course of type 1 diabetes, daytime blood pressure is higher compared with that of healthy control subjects. The elevation of nocturnal values is even more pronounced and nocturnal dipping is reduced. The frequency of white-coat hypertension is high among adolescents with diabetes, and ambulatory blood pressure monitoring avoids unnecessary antihypertensive treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most published genomewide association studies (GWAS) in sheep have investigated recessively inherited monogenic traits. The objective here was to assess the feasibility of performing GWAS for a dominant trait for which the genetic basis was already known. A total of 42 Manchega and Rasa Aragonesa sheep that segregate solid black or white coat pigmentation were genotyped using the SNP50 BeadChip. Previous analysis in Manchegas demonstrated a complete association between the pigmentation trait and alleles of the MC1R gene, setting an a priori expectation for GWAS. Multiple methods were used to identify and quantify the strength of population substructure between black and white animals, before allelic association testing was performed for 49 034 SNPs. Following correction for substructure, GWAS identified the most strongly associated SNP (s26449) was also the closest to the MC1R gene. The finding was strongly supported by the permutation tree-based random forest (RF) analysis. Importantly, GWAS identified unlinked SNP with only slightly lower p-values than for s26449. Random forest analysis indicated these were false positives, suggesting interpretation based on both approaches was beneficial. The results indicate that a combined analytical approach can be successful in studies where a modest number of animals are available and substantial population stratification exists.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Variants in the EDNRB, KIT, MITF, PAX3 and TRPM1 genes are known to cause white spotting phenotypes in horses, which can range from the common white markings up to completely white horses. In this study, we investigated these candidate genes in 169 horses with white spotting phenotypes not explained by the previously described variants. We identified a novel missense variant, PAX3:p.Pro32Arg, in Appaloosa horses with a splashed white phenotype in addition to their leopard complex spotting patterns. We also found three novel variants in the KIT gene. The splice site variant c.1346+1G>A occurred in a Swiss Warmblood horse with a pronounced depigmentation phenotype. The missense variant p.Tyr441Cys was present in several part-bred Arabians with sabino-like depigmentation phenotypes. Finally, we provide evidence suggesting that the common and widely distributed KIT:p.Arg682His variant has a very subtle white-increasing effect, which is much less pronounced than the effect of the other described KIT variants. We termed the new KIT variants W18-W20 to provide a simple and unambiguous nomenclature for future genetic testing applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Our objective was to investigate potential associations between maxillary sinus floor extension and inclination of maxillary second premolars and second molars in patients with Class II Division 1 malocclusion whose orthodontic treatment included maxillary first molar extractions. METHODS The records of 37 patients (18 boys, 19 girls; mean age, 13.2 years; SD, 1.62 years) treated between 1998 and 2004 by 1 orthodontist with full Begg appliances were used in this study. Inclusion criteria were white patients with Class II Division 1 malocclusion, sagittal overjet of ≥4 mm, treatment plan including extraction of the maxillary first permanent molars, no missing teeth, and no agenesis. Maxillary posterior tooth inclination and lower maxillary sinus area in relation to the palatal plane were measured on lateral cephalograms at 3 time points: at the start and end of treatment, and on average 2.5 years posttreatment. Data were analyzed for the second premolar and second molar inclinations by using mixed linear models. RESULTS The analysis showed that the second molar inclination angle decreased by 7° after orthodontic treatment, compared with pretreatment values, and by 11.5° at the latest follow-up, compared with pretreatment. There was evidence that maxillary sinus volume was negatively correlated with second molar inclination angle; the greater the volume, the smaller the inclination angle. For premolars, inclination increased by 15.4° after orthodontic treatment compared with pretreatment, and by 8.1° at the latest follow-up compared with baseline. The volume of the maxillary sinus was not associated with premolar inclination. CONCLUSIONS We found evidence of an association between maxillary second molar inclination and surface area of the lower sinus in patients treated with maxillary first molar extractions. Clinicians who undertake such an extraction scheme in Class II patients should be aware of this potential association and consider appropriate biomechanics to control root uprighting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coat color and pattern variations in domestic animals are frequently inherited as simple monogenic traits, but a number are known to have a complex genetic basis. While the analysis of complex trait data remains a challenge in all species, we can use the reduced haplotypic diversity in domestic animal populations to gain insight into the genomic interactions underlying complex phenotypes. White face and leg markings are examples of complex traits in horses where little is known of the underlying genetics. In this study, Franches-Montagnes (FM) horses were scored for the occurrence of white facial and leg markings using a standardized scoring system. A genome-wide association study (GWAS) was performed for several white patterning traits in 1,077 FM horses. Seven quantitative trait loci (QTL) affecting the white marking score with p-values p≤10(-4) were identified. Three loci, MC1R and the known white spotting genes, KIT and MITF, were identified as the major loci underlying the extent of white patterning in this breed. Together, the seven loci explain 54% of the genetic variance in total white marking score, while MITF and KIT alone account for 26%. Although MITF and KIT are the major loci controlling white patterning, their influence varies according to the basic coat color of the horse and the specific body location of the white patterning. Fine mapping across the MITF and KIT loci was used to characterize haplotypes present. Phylogenetic relationships among haplotypes were calculated to assess their selective and evolutionary influences on the extent of white patterning. This novel approach shows that KIT and MITF act in an additive manner and that accumulating mutations at these loci progressively increase the extent of white markings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In April 2008 a Franches-Montagnes colt was born with an unusual coat colour phenotype which had never been observed in that population before. The foal showed extended white markings on body and legs, a white head and blue eyes. As both parents have an unremarkable bay coat colour phenotype, a de novo mutation was expected in the offspring and a candidate gene approach revealed a spontaneous mutation in the microphthalmia associated transcription factor gene (MITF). A detailed clinical examination in 2010 indicated an impaired hearing capacity. As in the American Paint Horse large white facial markings in combination with blue eyes are associated with deafness, the hearing capacity of the stallion was closer examined performing brainstem auditory-evoked responses (BAER). The BAER confirmed bilateral deafness in the Franches-Montagnes colt. It is assumed that the deafness is caused by a melanocyte deficiency caused by the MITF gene mutation. Unfortunately, due to castration of the horse, the causal association between the mutation in the MITF gene and clinical findings cannot be confirmed by experimental matings.