5 resultados para Whey
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
High protein diets have been shown to improve hepatic steatosis in rodent models and in high-fat fed humans. We therefore evaluated the effects of a protein supplementation on intrahepatocellular lipids (IHCL), and fasting plasma triglycerides in obese non diabetic women.
Resumo:
The major bovine whey proteins, α-lactalbumin (α-LA) and β-lactoglobulin (β-LG), exhibit breed-specific genetic variation. The aim of this study was to identify possible new protein variants and determine the distribution of variants across a variety of 18 taurine and indicine cattle breeds applying a DNA-based sequencing approach. To this end, the open reading frames of the respective genes (LALBA and LGB) were sequenced in 476 animals. Within the LALBA gene, a previously unknown synonymous and a previously undesignated non-synonymous nucleotide exchange were identified. Furthermore, two known α-LA variants (A and B) and four known β-LG variants (A, B, C and W) were determined. The occurrence of typical indicine variants in some taurine cattle breeds, such as Suisse Eringer, German Hinterwälder and Hungarian Grey Steppe, further supports the hypothesis of ancient Bos indicus introgression into (peri-)alpine cattle breeds.
Resumo:
Beta-lactoglobulin (beta-LG) is the major whey protein in cow's milk. It is well established that the predominant 2 genetic variants, beta-LG A and B, are differentially expressed. Extensive investigation of the genetic variation in the promoter region of the BLG gene revealed the existence of specific haplotypes associated with the A and B variants, respectively. However, the genetic basis for the differential expression of BLG A and B alleles is still elusive. We have previously reported a quantitative beta-LG B variant, characterized by a very low beta-LG protein expression level. Here, we report that the corresponding BLG allele (BLG B*) shows a correspondingly low mRNA expression level. Comparative DNA sequencing of 7,670 bp of the BLG B* allele and the established BLG B allele revealed a unique difference of a C to A transversion at position 215 bp upstream of the translation initiation site (g.-215C>A). This mutation segregated perfectly with the differential phenotypic expression in a paternal half-sib family and could be confirmed in 2 independent cases. The sequence of the BLG B allele in the region of the mutation is highly conserved among 4 related ruminant species. The site of the mutation corresponds to a putative consensus-binding sequence for the transcription factors c-Rel and Elk-1 as predicted by searching the TRANSFAC database. The beta-LG B* site might be relevant in the natural production of milk of low beta-LG content.
Resumo:
beta-Lactoglobulin (beta-LG) is the major whey protein in the milk of cows and other ruminants. It is well established that the predominant genetic variants beta-LG A and B are differentially expressed. Extensive investigation of the genetic variation in the promoter region of the BLG gene revealed the existence of specific haplotypes associated with the A and B variants. However, the genetic basis for the differentially expressed BLG A and B alleles is still elusive. In this study additional genetic variation further upstream in the 5'-flanking region of the BLG gene was identified, including 6 single nucleotide substitutions, a single nucleotide deletion, and a 7-bp duplication. Comparison of DNA sequences showed that the investigated 5'-flanking region is highly conserved between ruminants, and the duplication g.-1885_-1879dupCTCTCGC and the substitution g.-1888A>G are only found in the BLG A and D alleles in cattle. The cytosine at position g.-1957 and the thymines at positions g.-2008 and g.-2049 are only found in BLG B alleles of cattle. It is suggested that the described genetic variability contributes to the differential allelic expression of the BLG gene.
Resumo:
The genetic variability of milk protein genes may influence the nutritive value or processing and functional properties of the milk. While numerous protein variants are known in ruminants, knowledge about milk protein variability in horses is still limited. Mare's milk is, however, produced for human consumption in many countries. Beta-lactoglobulin belonging to the protein family of lipocalins, which are known as common food- and airborne allergens, is a major whey protein. It is absent from human milk and thus a key agent in provoking cow's milk protein allergy. Mare's milk is, however, usually better tolerated by most affected people. Several functions of β-lactoglobulin have been discussed, but its ultimate physiological role remains unclear. In the current study, the open reading frames of the two equine β-lactoglobulin paralogues LGB1 and LGB2 were re-sequenced in 249 horses belonging to 14 different breeds in order to predict the existence of protein variants at the DNA-level. Thereby, only a single signal peptide variant of LGB1, but 10 different putative protein variants of LGB2 were identified. In horses, both genes are expressed and in such this is a striking previously unknown difference in genetic variability between the two genes. It can be assumed that LGB1 is the ancestral paralogue, which has an essential function causing a high selection pressure. As horses have very low milk fat content this unknown function might well be related to vitamin-uptake. Further studies are, however, needed, to elucidate the properties of the different gene products.