13 resultados para Wharton, Philip Wharton, Duke of, 1698-1731
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Objective:The aim of the study is to determine the neuroglial differentiation potential of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) from preterm birth when compared to term delivery.Study Design:The WJ-MSCs from umbilical cords of preterm birth and term controls were isolated and induced into neural progenitors. The cells were analyzed for neuroglial markers by flow cytometry, real-time polymerase chain reaction, and immunocytochemistry. Results:Independent of gestational age, a subset of WJ-MSC displayed the neural progenitor cell markers Nestin and Musashi-1 and the mature neural markers microtubule-associated protein 2, glial fibrillary acidic protein, and myelin basic protein. Neuroglial induction of WJ-MSCs from term and preterm birth resulted in the enhanced transcription of Nestin and Musashi-1.Conclusions:Undifferentiated WJ-MSCs from preterm birth express neuroglial markers and can be successfully induced into neural progenitors similar to term controls. Their potential use as cellular graft in neuroregenerative therapy for peripartum brain injury in preterm birth has to be tested.
Resumo:
Objective: The aim of the study was to compare the neuroglial phenotype of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC) from pregnancies complicated with preeclampsia and gestational age (GA)-matched controls. Methods: WJ-MSC were isolated from umbilical cords from both groups and analyzed for the cell surface expression of MSC markers and the gene and protein expression of neuroglial markers. Results: All WJ cells were highly positive for the MSC markers CD105, CD90 and CD73, but negative for markers specific for hematopoietic (CD34) and immunological cells (CD45, CD14, CD19 and HLA-DR). WJ-MSC from both groups expressed neuroglial markers (MAP-2, GFAP, MBP, Musashi-1 and Nestin) at the mRNA and protein level. The protein expressions of neuronal (MAP-2) and oligodendrocytic (MBP) markers were significantly increased in WJ-MSC from preeclampsia versus GA-matched controls. Conclusions: WJ-MSC from preeclamptic patients are possibly more committed to neuroglial differentiation through the activation of pathways involved both in the pathophysiology of the disease and in neurogenesis.
Resumo:
The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BMMSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJMSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.
Resumo:
The umbilical cord is not an inert structure, suspended between the fetus and placenta, but it plays an active role and it is involved in several processes afflicting the feto-placental unit. Its study has to be regarding not only its morphology and morphometry, and the impendance of blood flow by Doppler waveform analysis, but it includes also an analysis of the coiling type and the amount of the Wharton Jelly. The umbilical cord has been considered like an important and huge source of informations, useful to assess the well-being of the fetus and the outcome of pregnancy. The standardization of ultrasound techniques is the first step to speak the same language and make the study of this structure a fundamental part of well-being fetus assessment. This article is carefully focused on morphologic, morphometric and functional ultrasound examination of umbilical cord and suggests that any anomaly detected should provide an indication for an intense fetal follow-up, useful for early helpful therapy, preventing serious complication for the pregnancy.