3 resultados para West Philippine basin

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The closed Tangra Yumco Basin underwent the strongest Quaternary lake-level changes so far recorded on the Tibetan Plateau. It was hitherto unknown what effect this had on local Holocene vegetation development. A 3.6-m sediment core from a recessional lake terrace at 4,700 m a.s.l., 160 m above the present lake level of Tangra Yumco, was studied to reconstruct Holocene flooding phases (sedimentology and ostracod analyses), vegetation dynamics and human influence (palynology, charcoal and coprophilous fungi analyses). Peat at the base of the profile proves lake level was below 4,700 m a.s.l. during the Pleistocene/Holocene transition. A deep-lake phase started after 11 cal ka BP, but the ostracod record indicates the level was not higher than similar to 4,720 m a.s.l. (180 m above present) and decreased gradually after the early Holocene maximum. Additional sediment ages from the basin suggest recession of Tangra Yumco from the coring site after 2.6 cal ka BP, with a shallow local lake persisting at the site until similar to 1 cal ka BP. The final peat formation indicates drier conditions thereafter. Persistence of Artemisia steppe during the Holocene lake high-stand resembles palynological records from west Tibet that indicate early Holocene aridity, in spite of high lake levels that may have resulted from meltwater input. Yet pollen assemblages indicate humidity closer to that of present potential forest areas near Lhasa, with 500-600 mm annual precipitation. Thus, the early mid-Holocene humidity was sufficient to sustain at least juniper forest, but Artemisia dominance persisted as a consequence of a combination of environmental disturbances such as (1) strong early Holocene climate fluctuations, (2) inundation of habitats suitable for forest, (3) extensive water surfaces that served as barriers to terrestrial diaspore transport from refuge areas, (4) strong erosion that denuded the non-flooded upper slopes and (5) increasing human influence since the late glacial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use various data sets, including images from the High Resolution Imaging Science Experiment camera (HiRISE), to examine the ejecta of the generally fresh-looking Hale crater that occurs in the rugged mountain terrain of Nereidum Montes in the northern rim materials of the Argyre impact structure on Mars. Our investigation reveals that the distal parts of the Hale crater ejecta and other basin deposits behave like viscous flows, which we attribute to the secondary flow of ejecta mixed with water–ice-rich basin materials. Consistent with water-enrichment of the basin materials, our mapping further reveals occasionally deformed surfaces, including highly conspicuous features such as mounds and fractured plateaus that we interpret to be a result of periglacial modification, subsequent (including possibly present-day) to the transient localized melting and fluvial erosion caused by Hale-impact-generated heating. In particular, our morphometric analysis of a well-defined valley system west of Hale crater suggests that it may have been formed through hydrologic/glacial activity prior to the Hale impact, with additional modification resulting from the impact and subsequent geologic and hydrologic phenomena including glacial and periglacial activity.