40 resultados para Welding by coated eletrods (SER)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteogenic agents, such as bone morphogenetic protein-2 (BMP-2), can stimulate the degradation as well as the formation of bone. Hence, they could impair the osteoconductivity of functionalized implant surfaces. We assessed the effects of BMP-2 and its mode of delivery on the osteoconductivity of dental implants with either a naked titanium surface or a calcium-phosphate-coated one. The naked titanium surface bore adsorbed BMP-2, whilst the coated one bore incorporated, adsorbed, or incorporated and adsorbed BMP-2. The implants were inserted into the maxillae of adult miniature pigs. The volume of bone deposited within a defined "osteoconductive" (peri-implant) space, and bone coverage of the implant surface delimiting this space, were estimated morphometrically 1-3 weeks later. After 3 weeks, the volume of bone deposited within the osteoconductive space was highest for coated and uncoated implants bearing no BMP-2, followed by coated implants bearing incorporated BMP-2; it was lowest for coated implants bearing only adsorbed BMP-2. Bone-interface coverage was highest for coated implants bearing no BMP-2, followed by coated implants bearing either incorporated, or incorporated and adsorbed BMP-2; it was lowest for uncoated implants bearing adsorbed BMP-2. Hence, the osteoconductivity of implant surfaces can be significantly modulated by BMP-2 and its mode of delivery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cross-linking platelet GPIb with the snake C-type lectin echicetin provides a specific technique for activation via this receptor. This allows GPIb-dependent mechanisms to be studied without the necessity for shear stress-induced binding of von Willebrand factor or primary alpha(IIb)beta(3) involvement. We already showed that platelets are activated, including tyrosine phosphorylation, by echicetin-IgMkappa-induced GPIb cross-linking. We now investigate the mechanism further and demonstrate that platelets, without modulator reagents, spread directly on an echicetin-coated surface, by a GPIb-specific mechanism, causing exocytosis of alpha-granule markers (P-selectin) and activation of alpha(IIb)beta(3). This spreading requires actin polymerization and release of internal calcium stores but is not dependent on external calcium nor on src family tyrosine kinases. Cross-linking of GPIb complex molecules on platelets, either in suspension or via specific surface attachment, is sufficient to induce platelet activation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of IgG on cytokine production by human mononuclear cells (MNC) was studied. Tumor necrosis factor-alpha (TNF) was determined both by bioassay and by immunoassay. Interleukin-1 (IL1) was measured by a thymocyte costimulator assay, which was shown to be completely inhibitable by polyclonal anti-IL1. Precautions were taken to avoid inadvertent exposure of the studied cells to endotoxin. In a first model, TNF and IL1 production by adherent MNC in IgG-coated cluster plates were determined. IgG induced a strong TNF response, usually leveling off after 6 hr, and was comparable in kinetics and magnitude with an LPS-induced response. The thymocyte co-stimulatory activity response was relatively weak and peaked at 6 hr. In contrast, LPS-induced co-stimulatory activity production steadily increased over 24 hr. In a second model, MNC in suspension cultures containing autologous serum were exposed to IgG for intravenous use (IgG-IV). Cells exposed to IgG-IV produced higher amounts of cytokines than control counterparts and were primed for enhanced production of cytokines upon a second, unrelated stimulus. This implies that the effect of IgG-IV on suspended MNC resembles that of surface-adsorbed IgG and raises the possibility that cytokine release is an integral part of the mechanism of action of infused IgG. Evidence is presented suggesting that both surface IgG and IgG-IV act directly on monocytes, in a Fc-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the inflammatory response to, and the osteoinductive efficacies of, four polymers (collagen, Ethisorb, PLGA and Polyactive) that bore either an adsorbed (fast-release kinetics) or a calcium-phosphate-coating-incorporated (slow-release kinetics) depot of BMP-2. Titanium-plate-supported discs of each polymer (n = 6 per group) were implanted at an ectopic (subcutaneous) ossification site in rats (n = 48). Five weeks later, they were retrieved for a histomorphometric analysis of the volumes of ectopic bone and foreign-body giant cells (a gauge of inflammatory reactivity), and the degree of polymer degradation. For each polymer, the osteoinductive efficacy of BMP-2 was higher when it was incorporated into a coating than when it was directly adsorbed onto the material. This mode of BMP-2 carriage was consistently associated with an attenuation of the inflammatory response. For coated materials, the volume density of foreign-body giant cells was inversely correlated with the volume density of bone (r(2) = 0.96), and the volume density of bone was directly proportional to the surface-area density of the polymer (r(2) = 0.97). Following coating degradation, other competitive factors, such as the biocompatibility and the biodegradability of the polymer itself, came into play.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background During production and processing of multi-walled carbon nanotubes (MWCNTs), they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment. Results To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH2)- and carboxyl (-COOH)-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant. Conclusions A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study addresses the cellular uptake and intracellular trafficking of 15-nm gold nanoparticles (NPs), either plain (i.e., stabilized with citrate) or coated with polyethylene glycol (PEG), exposed to human alveolar epithelial cells (A549) at the air-liquid interface for 1, 4, and 24 h. Quantitative analysis by stereology on transmission electron microscopy images reveals a significant, nonrandom intracellular distribution for both NP types. No particles are observed in the nucleus, mitochondria, endoplasmic reticulum, or golgi. The cytosol is not a preferred cellular compartment for both NP types, although significantly more PEG-coated than citrate-stabilized NPs are present there. The preferred particle localizations are vesicles of different sizes (<150, 150-1000, >1000 nm). This is observed for both NP types and indicates a predominant uptake by endocytosis. Subsequent inhibition of caveolin- and clathrin-mediated endocytosis by methyl-beta-cyclodextrin (MbetaCD) results in a significant reduction of intracellular NPs. The inhibition, however, is more pronounced for PEG-coated than citrate-stabilized NPs. The latter are mostly found in larger vesicles; therefore, they are potentially taken up by macropinocytosis, which is not inhibited by MbetaCD. With prolonged exposure times, both NPs are preferentially localized in larger-sized intracellular vesicles such as lysosomes, thus indicating intracellular particle trafficking. This quantitative evaluation reveals that NP surface coatings modulate endocytotic uptake pathways and cellular NP trafficking. Other nonendocytotic entry mechanisms are found to be involved as well, as indicated by localization of a minority of PEG-coated NPs in the cytosol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed a pooled analysis of three trials comparing titanium-nitride-oxide-coated bioactive stents (BAS) with paclitaxel-eluting stents (PES) in 1,774 patients. All patients were followed for 12 months. The primary outcomes of interest were recurrent myocardial infarction (MI), death and target lesion revascularization (TLR). Secondary endpoints were stent thrombosis (ST) and major adverse cardiac events (MACE) including MI, death and TLR. There were 922 patients in the BAS group and 852 in the PES group. BAS significantly reduced the risk of recurrent MI (2.7% vs. 5.6%; risk ratio 0.50, 95% CI 0.31-0.81; p = 0.004) and MACE (8.9% vs. 12.6%; risk ratio 0.71, 95% CI 0.54-0.94; p = 0.02) during the 12 months of follow up. In contrast, the differences between BAS and PES were not statistically significant with respect to TLR (risk ratio 0.98, 95% CI 0.68-1.41), death (risk ratio 0.96, 95% CI 0.61-1.51) and definite ST (risk ratio 0.28, 95% CI 0.05-1.47). In conclusion, the results of this analysis suggest that BAS is effective in reducing TLR and improves clinical outcomes by reducing MI and MACE compared with PES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4+ T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4+ T cells, and induce cytokines. The decreased antigen processing and CD4+ T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rationale: Myofibroblasts typically appear in the myocardium after insults to the heart like mechanical overload and infarction. Apart from contributing to fibrotic remodeling, myofibroblasts induce arrhythmogenic slow conduction and ectopic activity in cardiomyocytes after establishment of heterocellular electrotonic coupling in vitro. So far, it is not known whether -smooth muscle actin (-SMA) containing stress fibers, the cytoskeletal components that set myofibroblasts apart from resident fibroblasts, are essential for myofibroblasts to develop arrhythmogenic interactions with cardiomyocytes. Objective: We investigated whether pharmacological ablation of -SMA containing stress fibers by actin-targeting drugs affects arrhythmogenic myofibroblastcardiomyocyte cross-talk. Methods and Results: Experiments were performed with patterned growth cell cultures of neonatal rat ventricular cardiomyocytes coated with cardiac myofibroblasts. The preparations exhibited slow conduction and ectopic activity under control conditions. Exposure to actin-targeting drugs (Cytochalasin D, Latrunculin B, Jasplakinolide) for 24 hours led to disruption of -SMA containing stress fibers. In parallel, conduction velocities increased dose-dependently to values indistinguishable from cardiomyocyte-only preparations and ectopic activity measured continuously over 24 hours was completely suppressed. Mechanistically, antiarrhythmic effects were due to myofibroblast hyperpolarization (Cytochalasin D, Latrunculin B) and disruption of heterocellular gap junctional coupling (Jasplakinolide), which caused normalization of membrane polarization of adjacent cardiomyocytes. Conclusions: The results suggest that -SMA containing stress fibers importantly contribute to myofibroblast arrhythmogeneicity. After ablation of this cytoskeletal component, cells lose their arrhythmic effects on cardiomyocytes, even if heterocellular electrotonic coupling is sustained. The findings identify -SMA containing stress fibers as a potential future target of antiarrhythmic therapy in hearts undergoing structural remodeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives This study sought to compare the efficacy of passive stent coating with titanium-nitride-oxide (TiNO) with drug-eluting stents releasing zotarolimus (ZES) (Endeavor, Medtronic, Minneapolis, Minnesota). Background Stent coating with TiNO has been shown to reduce restenosis compared with bare-metal stents in experimental and clinical studies. Methods In an assessor-blind noninferiority study, 302 patients undergoing percutaneous coronary intervention were randomized to treatment with TiNO or ZES. The primary endpoint was in-stent late loss at 6 to 8 months, and analysis was by intention to treat. Results Both groups were well balanced with respect to baseline clinical and angiographic characteristics. The TiNO group failed to reach the pre-specified noninferiority margin for the primary endpoint (in-stent late loss: 0.64 0.61 mm vs. 0.47 0.48 mm, difference: 0.16, upper 1-sided 95% confidence interval [CI]: 0.26; pnoninferiority = 0.54), and subsequent superiority testing was in favor of ZES (psuperiority = 0.02). In-segment binary restenosis was lower with ZES (11.1%) than with TiNO (20.5%; psuperiority = 0.04). A stratified analysis of the primary endpoint found particularly pronounced differences between stents among diabetic versus nondiabetic patients (0.90 0.69 mm vs. 0.39 0.38 mm; pinteraction = 0.04). Clinical outcomes showed a similar rate of death (0.7% vs. 0.7%; p = 1.00), myocardial infarction (5.3% vs. 6.7%; p = 0.60), and major adverse cardiac events (21.1% vs. 18.0%, hazard ratio: 1.19, 95% CI: 0.71 to 2.00; p = 0.50) at 1 year. There were no differences in rates of definite or probable stent thrombosis (0.7% vs. 0%; p = 0.51) at 1 year. Conclusions Compared with TiNO, ZES was superior with regard to late loss and binary restenosis. The concept of passive stent coating with TiNO remains inferior to drug-eluting stent technology in reducing restenosis. ([TIDE] Randomized Trial Comparing Titan Stent With Zotarolimus-Eluting Stent: NCT00492908)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biolimus-eluting stents (BESs) with a biodegradable polymer in abluminal coating achieve more complete coverage at 9 months compared with sirolimus-eluting stents (SESs) with a durable polymer, as assessed by optical coherence tomography (OCT). Whether this advantage persists or augments after complete resorption of the polymer (>12 months) is unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims To compare the tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent (ZES) vs. a fluoropolymer-coated everolimus-eluting stent (EES) at 13 months, using optical coherence tomography (OCT) in an all-comers' population of patients, in order to clarify the mechanism of eventual differences in the biocompatibility and thrombogenicity of the devices. Methods and results Patients randomized to angiographic follow-up in the RESOLUTE All Comers trial (NCT00617084) at pre-specified OCT sites underwent OCT follow-up at 13 months. Tissue coverage and apposition were assessed strut by strut, and the results in both treatment groups were compared using multilevel logistic or linear regression, as appropriate, with clustering at three different levels: patient, lesion, and stent. Fifty-eight patients (30 ZES and 28 EES), 72 lesions, 107 stents, and 23 197 struts were analysed. Eight hundred and eighty-seven and 654 uncovered struts (7.4 and 5.8%, P= 0.378), and 216 and 161 malapposed struts (1.8 and 1.4%, P= 0.569) were found in the ZES and EES groups, respectively. The mean thickness of coverage was 116 99 m in ZES and 142 113 m in EES (P= 0.466). No differences in per cent neointimal volume obstruction (12.5 7.9 vs. 15.0 10.7%) or other areasvolumetric parameters were found between ZES and EES, respectively. Conclusion No significant differences in tissue coverage, malapposition, or lumen/stent areas and volumes were detected by OCT between the hydrophilic polymer-coated ZES and the fluoropolymer-coated EES at 13-month follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic iron oxide nanoparticles have found application as contrast agents for magnetic resonance imaging (MRI) and as switchable drug delivery vehicles. Their stabilization as colloidal carriers remains a challenge. The potential of poly(ethylene imine)-g-poly(ethylene glycol) (PEGPEI) as stabilizer for iron oxide (-FeO) nanoparticles was studied in comparison to branched poly(ethylene imine) (PEI). Carrier systems consisting of -FeO-PEI and -FeO-PEGPEI were prepared and characterized regarding their physicochemical properties including magnetic resonance relaxometry. Colloidal stability of the formulations was tested in several media and cytotoxic effects in adenocarcinomic epithelial cells were investigated. Synthesized -FeO cores showed superparamagnetism and high degree of crystallinity. Diameters of polymer-coated nanoparticles -FeO-PEI and -FeO-PEGPEI were found to be 38.7 1.0 nm and 40.4 1.6 nm, respectively. No aggregation tendency was observable for -FeO-PEGPEI over 12 h even in high ionic strength media. Furthermore, IC values were significantly increased by more than 10-fold when compared to -FeO-PEI. Formulations exhibited r relaxivities of high numerical value, namely around 160 mM s. In summary, novel carrier systems composed of -FeO-PEGPEI meet key quality requirements rendering them promising for biomedical applications, e.g. as MRI contrast agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The objective of the study was to evaluate the efficacy of an additional usage of a diamond-coated curette on surface roughness, adhesion of periodontal ligament (PDL) fibroblasts, and of Streptococcus gordonii in vitro. MATERIALS AND METHODS: Test specimens were prepared from extracted teeth and exposed to instrumentation with conventional Gracey curettes with or without additional use of diamond-coated curettes. Surface roughness (Ra and Rz) was measured before and following treatment. In addition, the adhesion of PDL fibroblasts for 72h and adhesion of S. gordonii ATCC 10558 for 2h have been determined. RESULTS: Instrumentation with conventional Gracey curettes reduced surface roughness (median Ra before: 0.36m/after: 0.25m; p<0.001; median Rz before: 2.34m/after: 1.61m; p<0.001). The subsequent instrumentation with the diamond-coated curettes resulted in a median Ra of 0.31m/Rz of 2.06m (no significance in comparison to controls). The number of attached PDL fibroblasts did not change following scaling with Gracey curettes. The additional instrumentation with the diamond-coated curettes resulted in a two-fold increase in the number of attached PDL fibroblasts but not in the numbers of adhered bacteria. CONCLUSIONS: Treatment of root surfaces with conventional Gracey curettes followed by subsequent polishing with diamond-coated curettes may result in a root surface which provides favorable conditions for the attachment of PDL fibroblasts without enhancing microbial adhesion. CLINICAL RELEVANCE: The improved attachment of PDL fibroblasts and the limited microbial adhesion on root surfaces treated with scaling with conventional Gracey curettes followed by subsequent polishing with diamond-coated curettes may favor periodontal wound healing.