2 resultados para Web personalization

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Researchers suggest that personalization on the Semantic Web adds up to a Web 3.0 eventually. In this Web, personalized agents process and thus generate the biggest share of information rather than humans. In the sense of emergent semantics, which supplements traditional formal semantics of the Semantic Web, this is well conceivable. An emergent Semantic Web underlying fuzzy grassroots ontology can be accomplished through inducing knowledge from users' common parlance in mutual Web 2.0 interactions [1]. These ontologies can also be matched against existing Semantic Web ontologies, to create comprehensive top-level ontologies. On the Web, if augmented with information in the form of restrictions andassociated reliability (Z-numbers) [2], this collection of fuzzy ontologies constitutes an important basis for an implementation of Zadeh's restriction-centered theory of reasoning and computation (RRC) [3]. By considering real world's fuzziness, RRC differs from traditional approaches because it can handle restrictions described in natural language. A restriction is an answer to a question of the value of a variable such as the duration of an appointment. In addition to mathematically well-defined answers, RRC can likewise deal with unprecisiated answers as "about one hour." Inspired by mental functions, it constitutes an important basis to leverage present-day Web efforts to a natural Web 3.0. Based on natural language information, RRC may be accomplished with Z-number calculation to achieve a personalized Web reasoning and computation. Finally, through Web agents' understanding of natural language, they can react to humans more intuitively and thus generate and process information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the main part, electronic government (or e-government for short) aims to put digital public services at disposal for citizens, companies, and organizations. To that end, in particular, e-government comprises the application of Information and Communications Technology (ICT) to support government operations and provide better governmental services (Fraga, 2002) as possible with traditional means. Accordingly, e-government services go further as traditional governmental services and aim to fundamentally alter the processes in which public services are generated and delivered, after this manner transforming the entire spectrum of relationships of public bodies with its citizens, businesses and other government agencies (Leitner, 2003). To implement this transformation, one of the most important points is to inform the citizen, business, and/or other government agencies faithfully and in an accessible way. This allows all the partaking participants of governmental affairs for a transition from passive information access to active participation (Palvia and Sharma, 2007). In addition, by a corresponding handling of the participants' data, a personalization towards these participants may even be accomplished. For instance, by creating significant user profiles as a kind of participants' tailored knowledge structures, a better-quality governmental service may be provided (i.e., expressed by individualized governmental services). To create such knowledge structures, thus known information (e.g., a social security number) can be enriched by vague information that may be accurate to a certain degree only. Hence, fuzzy knowledge structures can be generated, which help improve governmental-participants relationship. The Web KnowARR framework (Portmann and Thiessen, 2013; Portmann and Pedrycz, 2014; Portmann and Kaltenrieder, 2014), which I introduce in my presentation, allows just all these participants to be automatically informed about changes of Web content regarding a- respective governmental action. The name Web KnowARR thereby stands for a self-acting entity (i.e. instantiated form the conceptual framework) that knows or apprehends the Web. In this talk, the frameworks respective three main components from artificial intelligence research (i.e. knowledge aggregation, representation, and reasoning), as well as its specific use in electronic government will be briefly introduced and discussed.