15 resultados para Web content management systems
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Technology advances in hardware, software and IP-networks such as the Internet or peer-to-peer file sharing systems are threatening the music business. The result has been an increasing amount of illegal copies available on-line as well as off-line. With the emergence of digital rights management systems (DRMS), the music industry seems to have found the appropriate tool to simultaneously fight piracy and to monetize their assets. Although these systems are very powerful and include multiple technologies to prevent piracy, it is as of yet unknown to what extent such systems are currently being used by content providers. We provide empirical analyses, results, and conclusions related to digital rights management systems and the protection of digital content in the music industry. It shows that most content providers are protecting their digital content through a variety of technologies such as passwords or encryption. However, each protection technology has its own specific goal, and not all prevent piracy. The majority of the respondents are satisfied with their current protection but want to reinforce it for the future, due to fear of increasing piracy. Surprisingly, although encryption is seen as the core DRM technology, only few companies are currently using it. Finally, half of the respondents do not believe in the success of DRMS and their ability to reduce piracy.
Resumo:
Digital Rights Management Systems (DRMS) are seen by content providers as the appropriate tool to, on the one hand, fight piracy and, on the other hand, monetize their assets. Although these systems claim to be very powerful and include multiple protection technologies, there is a lack of understanding about how such systems are currently being implemented and used by content providers. The aim of this paper is twofold. First, it provides a theoretical basis through which we present shortly the seven core protection technologies of a DRMS. Second, this paper provides empirical evidence that the seven protection technologies outlined in the first section of this paper are the most commonly used technologies. It further evaluates to what extent these technologies are being used within the music and print industry. It concludes that the three main Technologies are encryption, password, and payment systems. However, there are some industry differences: the number of protection technologies used, the requirements for a DRMS, the required investment, or the perceived success of DRMS in fighting piracy.
Resumo:
The Business and Information Technologies (BIT) project strives to reveal new insights into how modern IT impacts organizational structures and business practices using empirical methods. Due to its international scope, it allows for inter-country comparison of empirical results. Germany — represented by the European School of Management and Technologies (ESMT) and the Institute of Information Systems at Humboldt-Universität zu Berlin — joined the BIT project in 2006. This report presents the result of the first survey conducted in Germany during November–December 2006. The key results are as follows: • The most widely adopted technologies and systems in Germany are websites, wireless hardware and software, groupware/productivity tools, and enterprise resource planning (ERP) systems. The biggest potential for growth exists for collaboration and portal tools, content management systems, business process modelling, and business intelligence applications. A number of technological solutions have not yet been adopted by many organizations but also bear some potential, in particular identity management solutions, Radio Frequency Identification (RFID), biometrics, and third-party authentication and verification. • IT security remains on the top of the agenda for most enterprises: budget spending was increasing in the last 3 years. • The workplace and work requirements are changing. IT is used to monitor employees' performance in Germany, but less heavily compared to the United States (Karmarkar and Mangal, 2007).1 The demand for IT skills is increasing at all corporate levels. Executives are asking for more and better structured information and this, in turn, triggers the appearance of new decision-making tools and online technologies on the market. • The internal organization of companies in Germany is underway: organizations are becoming flatter, even though the trend is not as pronounced as in the United States (Karmarkar and Mangal, 2007), and the geographical scope of their operations is increasing. Modern IT plays an important role in enabling this development, e.g. telecommuting, teleconferencing, and other web-based collaboration formats are becoming increasingly popular in the corporate context. • The degree to which outsourcing is being pursued is quite limited with little change expected. IT services, payroll, and market research are the most widely outsourced business functions. This corresponds to the results from other countries. • Up to now, the adoption of e-business technologies has had a rather limited effect on marketing functions. Companies tend to extract synergies from traditional printed media and on-line advertising. • The adoption of e-business has not had a major impact on marketing capabilities and strategy yet. Traditional methods of customer segmentation are still dominating. The corporate identity of most organizations does not change significantly when going online. • Online sales channel are mainly viewed as a complement to the traditional distribution means. • Technology adoption has caused production and organizational costs to decrease. However, the costs of technology acquisition and maintenance as well as consultancy and internal communication costs have increased.
Resumo:
Traditionally, ontologies describe knowledge representation in a denotational, formalized, and deductive way. In addition, in this paper, we propose a semiotic, inductive, and approximate approach to ontology creation. We define a conceptual framework, a semantics extraction algorithm, and a first proof of concept applying the algorithm to a small set of Wikipedia documents. Intended as an extension to the prevailing top-down ontologies, we introduce an inductive fuzzy grassroots ontology, which organizes itself organically from existing natural language Web content. Using inductive and approximate reasoning to reflect the natural way in which knowledge is processed, the ontology’s bottom-up build process creates emergent semantics learned from the Web. By this means, the ontology acts as a hub for computing with words described in natural language. For Web users, the structural semantics are visualized as inductive fuzzy cognitive maps, allowing an initial form of intelligence amplification. Eventually, we present an implementation of our inductive fuzzy grassroots ontology Thus,this paper contributes an algorithm for the extraction of fuzzy grassroots ontologies from Web data by inductive fuzzy classification.
Resumo:
In his in uential article about the evolution of the Web, Berners-Lee [1] envisions a Semantic Web in which humans and computers alike are capable of understanding and processing information. This vision is yet to materialize. The main obstacle for the Semantic Web vision is that in today's Web meaning is rooted most often not in formal semantics, but in natural language and, in the sense of semiology, emerges not before interpretation and processing. Yet, an automated form of interpretation and processing can be tackled by precisiating raw natural language. To do that, Web agents extract fuzzy grassroots ontologies through induction from existing Web content. Inductive fuzzy grassroots ontologies thus constitute organically evolved knowledge bases that resemble automated gradual thesauri, which allow precisiating natural language [2]. The Web agents' underlying dynamic, self-organizing, and best-effort induction, enable a sub-syntactical bottom up learning of semiotic associations. Thus, knowledge is induced from the users' natural use of language in mutual Web interactions, and stored in a gradual, thesauri-like lexical-world knowledge database as a top-level ontology, eventually allowing a form of computing with words [3]. Since when computing with words the objects of computation are words, phrases and propositions drawn from natural languages, it proves to be a practical notion to yield emergent semantics for the Semantic Web. In the end, an improved understanding by computers on the one hand should upgrade human- computer interaction on the Web, and, on the other hand allow an initial version of human- intelligence amplification through the Web.
Resumo:
For the main part, electronic government (or e-government for short) aims to put digital public services at disposal for citizens, companies, and organizations. To that end, in particular, e-government comprises the application of Information and Communications Technology (ICT) to support government operations and provide better governmental services (Fraga, 2002) as possible with traditional means. Accordingly, e-government services go further as traditional governmental services and aim to fundamentally alter the processes in which public services are generated and delivered, after this manner transforming the entire spectrum of relationships of public bodies with its citizens, businesses and other government agencies (Leitner, 2003). To implement this transformation, one of the most important points is to inform the citizen, business, and/or other government agencies faithfully and in an accessible way. This allows all the partaking participants of governmental affairs for a transition from passive information access to active participation (Palvia and Sharma, 2007). In addition, by a corresponding handling of the participants' data, a personalization towards these participants may even be accomplished. For instance, by creating significant user profiles as a kind of participants' tailored knowledge structures, a better-quality governmental service may be provided (i.e., expressed by individualized governmental services). To create such knowledge structures, thus known information (e.g., a social security number) can be enriched by vague information that may be accurate to a certain degree only. Hence, fuzzy knowledge structures can be generated, which help improve governmental-participants relationship. The Web KnowARR framework (Portmann and Thiessen, 2013; Portmann and Pedrycz, 2014; Portmann and Kaltenrieder, 2014), which I introduce in my presentation, allows just all these participants to be automatically informed about changes of Web content regarding a- respective governmental action. The name Web KnowARR thereby stands for a self-acting entity (i.e. instantiated form the conceptual framework) that knows or apprehends the Web. In this talk, the frameworks respective three main components from artificial intelligence research (i.e. knowledge aggregation, representation, and reasoning), as well as its specific use in electronic government will be briefly introduced and discussed.
Resumo:
User interfaces are key properties of Business-to-Consumer (B2C) systems, and Web-based reservation systems are an important class of B2C systems. In this paper we show that these systems use a surprisingly broad spectrum of different approaches to handling temporal data in their Web inter faces. Based on these observations and on a literature analysis we develop a Morphological Box to present the main options for handling temporal data and give examples. The results indicate that the present state of developing and maintaining B2C systems has not been much influenced by modern Web Engi neering concepts and that there is considerable potential for improvement.
Resumo:
Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the delta N-15 and delta C-13 isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Delta delta N-15 (delta N-15 plant - delta N-15 soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in delta C-13 in hay and delta C-13 in both soil and hay between management types, but showed that delta C-13 abundances were significantly lower in soil of organic compared to conventional grasslands. delta C-15 values implied that management types did not substantially differ in nitrogen cycling. Only delta C-13 in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice.
Resumo:
BACKGROUND The number of older adults in the global population is increasing. This demographic shift leads to an increasing prevalence of age-associated disorders, such as Alzheimer's disease and other types of dementia. With the progression of the disease, the risk for institutional care increases, which contrasts with the desire of most patients to stay in their home environment. Despite doctors' and caregivers' awareness of the patient's cognitive status, they are often uncertain about its consequences on activities of daily living (ADL). To provide effective care, they need to know how patients cope with ADL, in particular, the estimation of risks associated with the cognitive decline. The occurrence, performance, and duration of different ADL are important indicators of functional ability. The patient's ability to cope with these activities is traditionally assessed with questionnaires, which has disadvantages (eg, lack of reliability and sensitivity). Several groups have proposed sensor-based systems to recognize and quantify these activities in the patient's home. Combined with Web technology, these systems can inform caregivers about their patients in real-time (e.g., via smartphone). OBJECTIVE We hypothesize that a non-intrusive system, which does not use body-mounted sensors, video-based imaging, and microphone recordings would be better suited for use in dementia patients. Since it does not require patient's attention and compliance, such a system might be well accepted by patients. We present a passive, Web-based, non-intrusive, assistive technology system that recognizes and classifies ADL. METHODS The components of this novel assistive technology system were wireless sensors distributed in every room of the participant's home and a central computer unit (CCU). The environmental data were acquired for 20 days (per participant) and then stored and processed on the CCU. In consultation with medical experts, eight ADL were classified. RESULTS In this study, 10 healthy participants (6 women, 4 men; mean age 48.8 years; SD 20.0 years; age range 28-79 years) were included. For explorative purposes, one female Alzheimer patient (Montreal Cognitive Assessment score=23, Timed Up and Go=19.8 seconds, Trail Making Test A=84.3 seconds, Trail Making Test B=146 seconds) was measured in parallel with the healthy subjects. In total, 1317 ADL were performed by the participants, 1211 ADL were classified correctly, and 106 ADL were missed. This led to an overall sensitivity of 91.27% and a specificity of 92.52%. Each subject performed an average of 134.8 ADL (SD 75). CONCLUSIONS The non-intrusive wireless sensor system can acquire environmental data essential for the classification of activities of daily living. By analyzing retrieved data, it is possible to distinguish and assign data patterns to subjects' specific activities and to identify eight different activities in daily living. The Web-based technology allows the system to improve care and provides valuable information about the patient in real-time.