57 resultados para Weak Alignment
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Apart from common cases of differential argument marking, referential hierarchies affect argument marking in two ways: (a) through hierarchical marking, where markers compete for a slot and the competition is resolved by a hierarchy, and (b) through co-argument sensitivity, where the marking of one argument depends on the properties of its co-argument. Here we show that while co-argument sensitivity cannot be analyzed in terms of hierarchical marking, hierarchical marking can be analyzed in terms of co-argument sensitivity. Once hierarchical effects on marking are analyzed in terms of co-argument sensitivity, it becomes possible to examine alignment patterns relative to referential categories in exactly the same way as one can examine alignment patterns relative to referential categories in cases of differential argument marking and indeed any other condition on alignment (such as tense or clause type). As a result, instances of hierarchical marking of any kind turn out not to present a special case in the typology of alignment, and there is no need for positing an additional non-basic alignment type such as “hierarchical alignment”. While hierarchies are not needed for descriptive and comparative purposes, we also cast doubt on their relevance in diachrony: examining two families for which hierarchical agreement has been postulated, Algonquian and Kiranti, we find only weak and very limited statistical evidence for agreement paradigms to have been shaped by a principled ranking of person categories.
Resumo:
Accurate placement of lesions is crucial for the effectiveness and safety of a retinal laser photocoagulation treatment. Computer assistance provides the capability for improvements to treatment accuracy and execution time. The idea is to use video frames acquired from a scanning digital ophthalmoscope (SDO) to compensate for retinal motion during laser treatment. This paper presents a method for the multimodal registration of the initial frame from an SDO retinal video sequence to a retinal composite image, which may contain a treatment plan. The retinal registration procedure comprises the following steps: 1) detection of vessel centerline points and identification of the optic disc; 2) prealignment of the video frame and the composite image based on optic disc parameters; and 3) iterative matching of the detected vessel centerline points in expanding matching regions. This registration algorithm was designed for the initialization of a real-time registration procedure that registers the subsequent video frames to the composite image. The algorithm demonstrated its capability to register various pairs of SDO video frames and composite images acquired from patients.
Resumo:
During development and regeneration of the mammalian nervous system, directional signals guide differentiating neurons toward their targets. Soluble neurotrophic molecules encode for preferential direction over long distances while the local topography is read by cells in a process requiring the establishment of focal adhesions. The mutual interaction between overlapping molecular and topographical signals introduces an additional level of control to this picture. The role of the substrate topography was demonstrated exploiting nanotechnologies to generate biomimetic scaffolds that control both the polarity of differentiating neurons and the alignment of their neurites. Here PC12 cells contacting nanogratings made of copolymer 2-norbornene ethylene (COC), were alternatively stimulated with Nerve Growth Factor, Forskolin, and 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic (8CPT-2Me-cAMP) or with a combination of them. Topographical guidance was differently modulated by the alternative stimulation protocols tested. Forskolin stimulation reduced the efficiency of neurite alignment to the nanogratings. This effect was linked to the inhibition of focal adhesion maturation. Modulation of neurite alignment and focal adhesion maturation upon Forskolin stimulation depended on the activation of the MEK/ERK signaling but were PkA independent. Altogether, our results demonstrate that topographical guidance in PC12 cells is modulated by the activation of alternative neuronal differentiation pathways.
Resumo:
Computer navigation in total knee arthroplasty is somewhat controversial. We have previously shown that femoral component positioning is more accurate with computed navigation than with conventional implantation techniques, but the clinical impact of this is unknown. We now report the 5-year outcome of our previously reported 2-year outcome study.