18 resultados para Wavelets and fast transform eavelet
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We report the analysis of the SI So rotational band contours of jet-cooled 5-methyl-2-hydroxypyrimidine (5M2HP), the enol form of deoxythymine. Unlike thymine, which exhibits a structureless spectrum, the vibronic spectrum of 5M2HP is well structured, allowing us to determine the rotational constants and the methyl group torsional barriers in the S-0 and S-1 states. The 0(0)(0), 6a(0)(1), 6b(0)(1), and 14(0)(1) band contours were measured at 900 MHz (0.03 cm(-1)) resolution using mass-specific two-color resonant two-photon ionization (2C-R2PI) spectroscopy. All four bands are polarized perpendicular to the pyrimidine plane (>90% c type), identifying the S-1 <- S-0 excitation of 5M2HP as a 1n pi* transition. All contours exhibit two methyl rotor subbands that arise from the lowest 5-methyl torsional states 0A '' and 1E ''. The S-0 and S-1 state torsional barriers were extracted from fits to the torsional subbands. The 3-fold barriers are V-3 '' = 13 cm(-1) and V3' = SI cm(-1); the 6-fold barrier contributions V-6 '' and V-6' are in the range of 2-3 cm(-1) and are positive in both states. The changes of A, B, and C rotational constants upon S-1 <- S-0 excitation were extracted from the contours and reflect an "anti-quinoidal" distortion. The 0(0)(0) contour can only be simulated if a 3 GHz Lorentzian line shape is included, which implies that the S-1(1n pi*) lifetime is similar to 55 ps. For the 6a(0)(1) and 6b(0)(1) bands, the Lorentzian component increases to 5.5 GHz, reflecting a lifetime decrease to similar to 30 ps. The short lifetimes are consistent with the absence of fluorescence from the 1n pi* state. Combining these measurements with the previous observation of efficient intersystem crossing (ISC) from the Si state to a long-lived T-1((3)n pi*) state that lies similar to 2200 cm(-1) below [S. Lobsiger, S. et al. Phys. Chem. Chem. Phys. 2010, 12, 5032] implies that the broadening arises from fast intersystem crossing with k(ISC) approximate to 2 x 10(10) s(-1). In comparison to 5-methylpyrimidine, the ISC rate is enhanced by at least 10 000 by the additional hydroxy group in position 2.
Resumo:
Neural dynamic processes correlated over several time scales are found in vivo, in stimulus-evoked as well as spontaneous activity, and are thought to affect the way sensory stimulation is processed. Despite their potential computational consequences, a systematic description of the presence of multiple time scales in single cortical neurons is lacking. In this study, we injected fast spiking and pyramidal (PYR) neurons in vitro with long-lasting episodes of step-like and noisy, in-vivo-like current. Several processes shaped the time course of the instantaneous spike frequency, which could be reduced to a small number (1-4) of phenomenological mechanisms, either reducing (adapting) or increasing (facilitating) the neuron's firing rate over time. The different adaptation/facilitation processes cover a wide range of time scales, ranging from initial adaptation (<10 ms, PYR neurons only), to fast adaptation (<300 ms), early facilitation (0.5-1 s, PYR only), and slow (or late) adaptation (order of seconds). These processes are characterized by broad distributions of their magnitudes and time constants across cells, showing that multiple time scales are at play in cortical neurons, even in response to stationary stimuli and in the presence of input fluctuations. These processes might be part of a cascade of processes responsible for the power-law behavior of adaptation observed in several preparations, and may have far-reaching computational consequences that have been recently described.
Resumo:
The delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) technique has shown promising results in pilot clinical studies of early osteoarthritis. Currently, its broader acceptance is limited by the long scan time and the need for postprocessing to calculate the T1 maps. A fast T1 mapping imaging technique based on two spoiled gradient echo images was implemented. In phantom studies, an appropriate flip angle combination optimized for center T1 of 756 to 955 ms yielded excellent agreement with T1 measured using the inversion recovery technique in the range of 200 to 900 ms, of interest in normal and diseased cartilage. In vivo validation was performed by serially imaging 26 hips using the inversion recovery and the Fast 2 angle T1 mapping techniques (center T1 756 ms). Excellent correlation with Pearson correlation coefficient R2 of 0.74 was seen and Bland-Altman plots demonstrated no systematic bias.
Resumo:
We present a new radiation scheme for the Oxford Planetary Unified Model System for Venus, suitable for the solar and thermal bands. This new and fast radiative parameterization uses a different approach in the two main radiative wavelength bands: solar radiation (0.1-5.5 mu m) and thermal radiation (1.7-260 mu m). The solar radiation calculation is based on the delta-Eddington approximation (two-stream-type) with an adding layer method. For the thermal radiation case, a code based on an absorptivity/emissivity formulation is used. The new radiative transfer formulation implemented is intended to be computationally light, to allow its incorporation in 3D global circulation models, but still allowing for the calculation of the effect of atmospheric conditions on radiative fluxes. This will allow us to investigate the dynamical-radiative-microphysical feedbacks. The model flexibility can be also used to explore the uncertainties in the Venus atmosphere such as the optical properties in the deep atmosphere or cloud amount. The results of radiative cooling and heating rates and the global-mean radiative-convective equilibrium temperature profiles for different atmospheric conditions are presented and discussed. This new scheme works in an atmospheric column and can be easily implemented in 3D Venus global circulation models. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r(2) ? -0.86) as well as calcium release (r(2) ? -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r(2) = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.
Resumo:
MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofísica de Andalucía (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further significant biases have been detected. Cross-comparison to co-located observations of other satellite instruments (Aura/MLS, ACE-FTS, AIRS) is provided as well.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) is a means to study the function and connectivity of brain areas. The present study addressed the question of hemispheric asymmetry of frontal regions and aimed to further understand the acute effects of high- and low-frequency rTMS on regional cerebral blood flow (rCBF). Sixteen healthy right-handed men were imaged using H(2)(15)O positron emission tomography (PET) immediately after stimulation. High (10 Hz)- and low (1 Hz)-frequency suprathreshold short-duration rTMS was applied over either the left or right dorsolateral prefrontal cortex (DLPFC). Slow and fast rTMS applied over the left DLPFC significantly increased CBF in the stimulated area. Compared to baseline, slow rTMS induced a significant increase in CBF contralateral to the stimulation site, in the right caudate body and in the anterior cingulum. Furthermore, slow rTMS decreased CBF in the orbitofrontal cortex (OFC, ipsilateral to stimulation side). Fast rTMS applied over the right DLPFC was associated with increased activity at the stimulation site, in the bilateral orbitofrontal cortex and in the left medial thalamus compared to 1-Hz rTMS. These results show that rCBF changes induced by prefrontal rTMS differ upon hemisphere stimulated and vary with stimulation frequency. These differential neurophysiological effects of short-train rTMS with respect to side and frequency suggest hemisphere-dependent functional circuits of frontal cortico-subcortical areas.
Resumo:
PURPOSE: A microangiographical technique is described, which allows visualization of small and capillary blood vessels and quantification of fasciocutaneous blood vessels by means of digital computer analysis in very small laboratory animals. MATERIALS AND METHODS: The left carotid artery of 20 nu/nu mice was cannulated (26 gauge) and a mixture of gelatin, bariumsulfate, and green ink was injected according to standardized protocol. Fasciocutaneous blood vessels were visualized by digital mammography and analyzed for vessel length and vessel surface area as standardized units [SU] by computer program. RESULTS: With the described microangiography method, fasciocutaneous blood vessels down to capillary size level can be clearly visualized. Regions of interest (ROIs) can be defined and the containing vascular network quantified. Comparable results may be obtained by calculating the microvascular area index (MAI) and the microvascular length index (MLI), related to the ROIs size. Identical ROIs showed a high reproducibility for measured [SU] < 0.01 +/- 0.0012%. CONCLUSION: Combining microsurgical techniques, pharmacological knowledge, and modern digital image technology, we were able to visualize small and capillary blood vessels even in small laboratory animals. By using our own computer analytical program, quantification of vessels was reliable, highly reproducible, and fast.
Resumo:
Restriction fragment length polymorphism (RFLP) analysis is an economic and fast technique for molecular typing but has the drawback of difficulties in accurately sizing DNA fragments and comparing banding patterns on agarose gels. We aimed to improve RFLP for typing of the important human pathogen Streptococcus pneumoniae and to compare the results with the commonly used typing techniques of pulsed-field gel electrophoresis and multilocus sequence typing. We designed primers to amplify a noncoding region adjacent to the pneumolysin gene. The PCR product was digested separately with six restriction endonucleases, and the DNA fragments were analyzed using an Agilent 2100 bioanalyzer for accurate sizing. The combined RFLP results for all enzymes allowed us to assign each of the 47 clinical isolates of S. pneumoniae tested to one of 33 RFLP types. RFLP analyzed using the bioanalyzer allowed discrimination between strains similar to that obtained by the more commonly used techniques of pulsed-field gel electrophoresis, which discriminated between 34 types, and multilocus sequence typing, which discriminated between 35 types, but more quickly and with less expense. RFLP of a noncoding region using the Agilent 2100 bioanalyzer could be a useful addition to the molecular typing techniques in current use for S. pneumoniae, especially as a first screen of a local population.
Resumo:
A 272-ha grove of dominant Microberlinia bisulcata (Caesalpinioideae) adult trees greater than or equal to 50 cm stem diameter was mapped in its entirety in the southern part of Korup National Park, Cameroon. The approach used an earlier-established 82.5-ha permanent plot with a new surrounding 50-m grid of transect lines. Tree diameters were available from the plot but trees on the grid were recorded as being greater than or equal to 50 cm. The grove consisted of 1028 trees in 2000. Other species occurred within the grove. including the associated subdominants Tetraberlinia bifoliolata and T. korupensis. Microberlinia bisulcata becomes adult at a stein diameter of c. 50 cm and at an estimated age of 50 y. Three oval-shaped subgroves with dimensions c. 8 50 in x 13 50 in (90 ha) were defined. For two of them (within the plot) tree diameters were available. Subgroves differed in their scales and intensities of spatial tree patterns, and in their size frequency distributions, these suggesting differing past dynamics. The modal scale of clumping was 40-50 m. Seed dispersal by pod ejection (to c. 50 in) was evident from the semi-circles of trees at the grove's edge and from the many internal circles (100-200 m diameter). The grove has the capacity. therefore, to increase at c. 100 m per century. To form its present extent and structure. it is inferred that it expanded and infilled from a possibly smaller area of lower adult-tree density. This possibly happened in three waves of recruitment, each one determined by a period of several intense disturbances. Climate records for Africa show that 1740-50 and 1820-30 were periods of drought, and that 1870-1895 was also regionally very dry. Canopy openings allow the light-demanding and fast-growing ectomycorrhizal M. bisulcata to establish, but successive releases are thought to be required to achieve effective recruitment. Nevertheless, in the last 50 y there were no major events and recruitment in the grove was very poor. This present study leads to a new hypothesis of the role of periods of multiple extreme events being the driving factor for the population dynamics of many large African tree species such as M. bisulcata.
Resumo:
BACKGROUND: Dopamine agonists (DAs) represent the first-line treatment in restless legs syndrome (RLS); however, in the long term, a substantial proportion of patients will develop augmentation, which is a severe drug-related exacerbation of symptoms and the main reason for late DA withdrawal. Polysomnographic features and mechanisms underlining augmentation are unknown. No practice guidelines for management of augmentation are available. METHODS: A clinical case series of 24 consecutive outpatients affected by RLS with clinically significant augmentation during treatment with immediate-release DA was performed. All patients underwent a full-night polysomnographic recording during augmentation. A switchover from immediate-release DAs (l-dopa, pramipexole, ropinirole, rotigotine) to the long-acting, extended-release formula of pramipexole was performed. RESULTS: Fifty percent of patients presented more than 15 periodic limb movements per hour of sleep during augmentation, showing longer sleep latency and shorter total sleep time than subjects without periodic limb movements. In all patients, resolution of augmentation was observed within two to four weeks during which immediate-release dopamine agonists could be completely withdrawn. Treatment efficacy of extended-release pramipexole has persisted, thus far, over a mean follow-up interval of 13 months. CONCLUSIONS: Pramipexole extended release could be an easy, safe, and fast pharmacological option to treat augmentation in patients with restless legs syndrome. As such it warrants further prospective and controlled investigations. This observation supports the hypothesis that the duration of action of the drug plays a key role in the mechanism of augmentation.
Resumo:
The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit.