10 resultados para Water supply networks
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Groundwater age is a key aspect of production well vulnerability. Public drinking water supply wells typically have long screens and are expected to produce a mixture of groundwater ages. The groundwater age distributions of seven production wells of the Holten well field (Netherlands) were estimated from tritium-helium (3H/3He), krypton-85 (85Kr), and argon-39 (39Ar), using a new application of a discrete age distribution model and existing mathematical models, by minimizing the uncertainty-weighted squared differences of modeled and measured tracer concentrations. The observed tracer concentrations fitted well to a 4-bin discrete age distribution model or a dispersion model with a fraction of old groundwater. Our results show that more than 75 of the water pumped by four shallow production wells has a groundwater age of less than 20 years and these wells are very vulnerable to recent surface contamination. More than 50 of the water pumped by three deep production wells is older than 60 years. 3H/3He samples from short screened monitoring wells surrounding the well field constrained the age stratification in the aquifer. The discrepancy between the age stratification with depth and the groundwater age distribution of the production wells showed that the well field preferentially pumps from the shallow part of the aquifer. The discrete groundwater age distribution model appears to be a suitable approach in settings where the shape of the age distribution cannot be assumed to follow a simple mathematical model, such as a production well field where wells compete for capture area.
Resumo:
In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite). Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.
Resumo:
The question of how Constantinople got enough water to support its vast population has been an important area of research. A great deal of valuable work has been done in recent years on the water supply and its technology. Something that has been less thoroughly investigated is the water usage in Constantinople. Once the water was collected in the city, how was it dispersed? How was it used? This paper attempts to trace water distribution, use, and disposal in the city. I will use a combination of literary and material sources to understand the technology of the Constantinopolitan water supply.
Resumo:
Access to sufficient quantities of safe drinking water is a human right. Moreover, access to clean water is of public health relevance, particularly in semi-arid and Sahelian cities due to the risks of water contamination and transmission of water-borne diseases. We conducted a study in Nouakchott, the capital of Mauritania, to deepen the understanding of diarrhoeal incidence in space and time. We used an integrated geographical approach, combining socio-environmental, microbiological and epidemiological data from various sources, including spatially explicit surveys, laboratory analysis of water samples and reported diarrhoeal episodes. A geospatial technique was applied to determine the environmental and microbiological risk factors that govern diarrhoeal transmission. Statistical and cartographic analyses revealed concentration of unimproved sources of drinking water in the most densely populated areas of the city, coupled with a daily water allocation below the recommended standard of 20 l per person. Bacteriological analysis indicated that 93% of the non-piped water sources supplied at water points were contaminated with 10-80 coliform bacteria per 100 ml. Diarrhoea was the second most important disease reported at health centres, accounting for 12.8% of health care service consultations on average. Diarrhoeal episodes were concentrated in municipalities with the largest number of contaminated water sources. Environmental factors (e.g. lack of improved water sources) and bacteriological aspects (e.g. water contamination with coliform bacteria) are the main drivers explaining the spatio-temporal distribution of diarrhoea. We conclude that integrating environmental, microbiological and epidemiological variables with statistical regression models facilitates risk profiling of diarrhoeal diseases. Modes of water supply and water contamination were the main drivers of diarrhoea in this semi-arid urban context of Nouakchott, and hence require a strategy to improve water quality at the various levels of the supply chain.
Resumo:
Competing water demands for household consumption as well as the production of food, energy, and other uses pose challenges for water supply and sustainable development in many parts of the world. Designing creative strategies and learning processes for sustainable water governance is thus of prime importance. While this need is uncontested, suitable approaches still have to be found. In this article we present and evaluate a conceptual approach to scenario building aimed at transdisciplinary learning for sustainable water governance. The approach combines normative, explorative, and participatory scenario elements. This combination allows for adequate consideration of stakeholders’ and scientists’ systems, target, and transformation knowledge. Application of the approach in the MontanAqua project in the Swiss Alps confirmed its high potential for co-producing new knowledge and establishing a meaningful and deliberative dialogue between all actors involved. The iterative and combined approach ensured that stakeholders’ knowledge was adequately captured, fed into scientific analysis, and brought back to stakeholders in several cycles, thereby facilitating learning and co-production of new knowledge relevant for both stakeholders and scientists. However, the approach also revealed a number of constraints, including the enormous flexibility required of stakeholders and scientists in order for them to truly engage in the co-production of new knowledge. Overall, the study showed that shifts from strategic to communicative action are possible in an environment of mutual trust. This ultimately depends on creating conditions of interaction that place scientists’ and stakeholders’ knowledge on an equal footing.
Resumo:
Environmental policy and decision-making are characterized by complex interactions between different actors and sectors. As a rule, a stakeholder analysis is performed to understand those involved, but it has been criticized for lacking quality and consistency. This lack is remedied here by a formal social network analysis that investigates collaborative and multi-level governance settings in a rigorous way. We examine the added value of combining both elements. Our case study examines infrastructure planning in the Swiss water sector. Water supply and wastewater infrastructures are planned far into the future, usually on the basis of projections of past boundary conditions. They affect many actors, including the population, and are expensive. In view of increasing future dynamics and climate change, a more participatory and long-term planning approach is required. Our specific aims are to investigate fragmentation in water infrastructure planning, to understand how actors from different decision levels and sectors are represented, and which interests they follow. We conducted 27 semi-structured interviews with local stakeholders, but also cantonal and national actors. The network analysis confirmed our hypothesis of strong fragmentation: we found little collaboration between the water supply and wastewater sector (confirming horizontal fragmentation), and few ties between local, cantonal, and national actors (confirming vertical fragmentation). Infrastructure planning is clearly dominated by engineers and local authorities. Little importance is placed on longer-term strategic objectives and integrated catchment planning, but this was perceived as more important in a second analysis going beyond typical questions of stakeholder analysis. We conclude that linking a stakeholder analysis, comprising rarely asked questions, with a rigorous social network analysis is very fruitful and generates complementary results. This combination gave us deeper insight into the socio-political-engineering world of water infrastructure planning that is of vital importance to our well-being.
Resumo:
Temperate C3-grasslands are of high agricultural and ecological importance in Central Europe. Plant growth and consequently grassland yields depend strongly on water supply during the growing season, which is projected to change in the future. We therefore investigated the effect of summer drought on the water uptake of an intensively managed lowland and an extensively managed sub-alpine grassland in Switzerland. Summer drought was simulated by using transparent shelters. Standing above- and belowground biomass was sampled during three growing seasons. Soil and plant xylem waters were analyzed for oxygen (and hydrogen) stable isotope ratios, and the depths of plant water uptake were estimated by two different approaches: (1) linear interpolation method and (2) Bayesian calibrated mixing model. Relative to the control, aboveground biomass was reduced under drought conditions. In contrast to our expectations, lowland grassland plants subjected to summer drought were more likely (43–68 %) to rely on water in the topsoil (0–10 cm), whereas control plants relied less on the topsoil (4–37 %) and shifted to deeper soil layers (20–35 cm) during the drought period (29–48 %). Sub-alpine grassland plants did not differ significantly in uptake depth between drought and control plots during the drought period. Both approaches yielded similar results and showed that the drought treatment in the two grasslands did not induce a shift to deeper uptake depths, but rather continued or shifted water uptake to even more shallower soil depths. These findings illustrate the importance of shallow soil depths for plant performance under drought conditions.
Resumo:
This paper presents a multifactor approach for performance assessment of Water Users Associations (WUAs) in Uzbekistan in order to identify the drivers for improved and effi cient performance of WUAs. The study was carried out in the Fergana Valley where the WUAs were created along the South Fergana Main Canal during the last 10 years. The farmers and the employees of 20 WUAs were questioned about the WUAs’ activities and the quantitative and qualitative data were obtained. This became a base for the calculation of 36 indicators divided into 6 groups: Water supply, technical conditions, economic conditions, social and cultural conditions, organizational conditions and information conditions. All the indicators assessed with a differentiated point system adjusted for subjectivity of several of them give the total maximal result for the associations of 250 point. The WUAs of the Fergana Valley showed the score between 145 and 219 points, what refl ects a highly diverse level of the WUAs performance in the region. The analysis of the indicators revealed that the key points of the WUA’s success are the organizational and institutional conditions including the participatory factors and awareness of both the farmers and employees about the work of WUA. The research showed that the low performance of the WUAs is always explained by the low technical and economic conditions along with weak organization and information dissemination conditions. It is clear that it is complicated to improve technical and economic conditions immediately because they are cost-based and cost-induced. However, it is possible to improve the organizational conditions and to strengthen the institutional basis via formal and information institutions which will gradually lead to improvement of economic and technical conditions of WUAs. Farmers should be involved into the WUA Governance and into the process of making common decisions and solving common problems together via proper institutions. Their awareness can also be improved by leading additional trainings for increasing farmers’ agronomic and irrigation knowledge, teaching them water saving technologies and acquainting them with the use of water measuring equipment so it can bring reliable water supply, transparent budgeting and adequate as well as equitable water allocation to the water users.
Resumo:
The study deals with the status and potential of surface water resources in Upper Anseba, Central Highlands of Eritrea, one of the most densely populated regions in Eritrea, including small scale farming and the country's capital city. water demand is increasing rapidly for all uses. The area has no perennial water course and depends very largely on reservoirs for its water supply. The report finds that there are 74 reservoirs in the area, of which 49 are in Upper Anseba. Total reservoir capacity already corresponds to 70% of runoff. the capacity of some of the reservoirs already exceeds annual runoff of their catchment. Recommendations thus include the use of water saving technologies for irrigation; and above all, preparation of a regional master plan for development, including water allocation planning with a mid term perspective.
Resumo:
Although the recycling of municipal wastewater can play an important role in water supply security and ecosystem protection, the percentage of wastewater recycled is generally low and strikingly variable. Previous research has employed detailed case studies to examine the factors that contribute to recycling success but usually lacks a comparative perspective across cases. In this study, 25 water utilities in New South Wales, Australia, were compared using fuzzy-set Qualitative Comparative Analysis (fsQCA). This research method applies binary logic and set theory to identify the minimal combinations of conditions that are necessary and/or sufficient for an outcome to occur within the set of cases analyzed. The influence of six factors (rainfall, population density, coastal or inland location, proximity to users; cost recovery and revenue for water supply services) was examined for two outcomes, agricultural use and "heavy" (i.e., commercial/municipal/industrial) use. Each outcome was explained by two different pathways, illustrating that different combinations of conditions are associated with the same outcome. Generally, while economic factors are crucial for heavy use, factors relating to water stress and geographical proximity matter most for agricultural reuse. These results suggest that policies to promote wastewater reuse may be most effective if they target uses that are most feasible for utilities and correspond to the local context. This work also makes a methodological contribution through illustrating the potential utility of fsQCA for understanding the complex drivers of performance in water recycling.