18 resultados para Water retention curve
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A water desaturation zone develops around a tunnel in water-saturated rock when the evaporative water loss at the rock surface is larger than the water flow from the surrounding saturated region of restricted permeability. We describe the methods with which such water desaturation processes in rock materials can be quantified. The water retention characteristic theta(psi) of crystalline rock samples was determined with a pressure membrane apparatus. The negative water potential, identical to the capillary pressure, psi, below the tensiometric range (psi < -0.1 MPa) can be measured with thermocouple psychrometers (TP), and the volumetric water contents, theta, by means of time domain reflectometry (TDR). These standard methods were adapted for measuring the water status in a macroscopically unfissured granodiorite with a total porosity of approximately 0.01. The measured water retention curve of granodiorite samples from the Grimsel test site (central Switzerland) exhibits a shape which is typical for bimodal pore size distributions. The measured bimodality is probably an artifact of a large surface ratio of solid/voids. The thermocouples were installed without a metallic screen using the cavity drilled into the granodiorite as a measuring chamber. The water potentials observed in a cylindrical granodiorite monolith ranged between -0.1 and -3.0 MPa; those near the wall in a ventilated tunnel between -0.1 and -2.2 MPa. Two types of three-rod TDR Probes were used, one as a depth probe inserted into the rock, the other as a surface probe using three copper stripes attached to the surface for detecting water content changes in the rock-to-air boundary. The TDR signal was smoothed with a low-pass filter, and the signal length determined based on the first derivative of the trace. Despite the low porosity of crystalline rock these standard methods are applicable to describe the unsaturated zone in solid rock and may also be used in other consolidated materials such as concrete.
Resumo:
Previous studies have suggested that oral or intravenous glucose enhances salt and water retention following a saline load. To test this, we studied the effects of an oral glucose load on urinary sodium and water excretion and serum biochemistry in response to a 2l intravenous infusion of 0.9% saline in normal subjects.
Resumo:
PURPOSE Hyponatremia is frequently observed in intensive care unit (ICU) patients, but there is still lack information on the physiological mechanisms of development. MATERIALS AND METHODS In this retrospective analysis we performed tonicity balances in 54 patients with ICU acquired hyponatremia. We calculated fluid and solute in and outputs during 24 hours in 106 patient days with decreasing serum-sodium levels. RESULTS We could observe a positive fluid balance as a single reason for hyponatremia in 25% of patients and a negative solute balance in 57%. In 18% both factors contributed to the decrease in serum-sodium. Hyponatremic patients had renal water retention, measured by electrolyte free water clearance calculation in 79% and positive input of free water in 67% as reasons for decline of serum-sodium. The theoretical change of serum sodium during 24 hours according to the calculations of measured balances correlated well with the real change of serum sodium (r = 0.78, P < .01). CONCLUSIONS Balance studies showed that renal water retention together with renal sodium loss and high electrolyte free water input are the major contributors to the development of hyponatremia. Control of renal water and sodium handling by urine analysis may contribute to a better fluid management in the ICU population.
Resumo:
Safe disposal of toxic wastes in geologic formations requires minimal water and gas movement in the vicinity of storage areas, Ventilation of repository tunnels or caverns built in solid rock can desaturate the near field up to a distance of meters from the rock surface, even when the surrounding geological formation is saturated and under hydrostatic pressures. A tunnel segment at the Grimsel test site located in the Aare granite of the Bernese Alps (central Switzerland) has been subjected to a resaturation and, subsequently, to a controlled desaturation, Using thermocouple psychrometers (TP) and time domain reflectometry (TDR), the water potentials psi and water contents theta were measured within the unsaturated granodiorite matrix near the tunnel wall at depths between 0 and 160 cm. During the resaturation the water potentials in the first 30 cm from the rock surface changed within weeks from values of less than -1.5 MPa to near saturation. They returned to the negative initial values during desaturation, The dynamics of this saturation-desaturation regime could be monitored very sensitively using the thermocouple psychrometers, The TDR measurements indicated that water contents changed dose to the surface, but at deeper installation depths the observed changes were within the experimental noise. The field-measured data of the desaturation cycle were used to test the predictive capabilities of the hydraulic parameter functions that were derived from the water retention characteristics psi(theta) determined in the laboratory. A depth-invariant saturated hydraulic conductivity k(s) = 3.0 x 10(-11) m s(-1) was estimated from the psi(t) data at all measurement depths, using the one-dimensional, unsaturated water flow and transport model HYDRUS Vogel er al., 1996, For individual measurement depths, the estimated k(s) varied between 9.8 x 10(-12) and 6.1 x 10(-11) The fitted k(s) values fell within the range of previously estimated k(s) for this location and led to a satisfactory description of the data, even though the model did not include transport of water vapor.
Resumo:
The refeeding syndrome is a potentially lethal complication of refeeding in patients who are severely malnourished from whatever cause. Too rapid refeeding, particularly with carbohydrate may precipitate a number of metabolic and pathophysiological complications, which may adversely affect the cardiac, respiratory, haematological, hepatic and neuromuscular systems leading to clinical complications and even death. We aimed to review the development of the refeeding syndrome in a variety of situations and, from this and the literature, devise guidelines to prevent and treat the condition. We report seven cases illustrating different aspects of the refeeding syndrome and the measures used to treat it. The specific complications encountered, their physiological mechanisms, identification of patients at risk, and prevention and treatment are discussed. Each case developed one or more of the features of the refeeding syndrome including deficiencies and low plasma levels of potassium, phosphate, magnesium and thiamine combined with salt and water retention. These responded to specific interventions. In most cases, these abnormalities could have been anticipated and prevented. The main features of the refeeding syndrome are described with a protocol to anticipate, prevent and treat the condition in adults.
Resumo:
Adrenal aldosterone production, the major regulator of salt and water retention, is discussed with respect to hypertensive diseases. Physiological aldosterone production is tightly regulated, either stimulated or inhibited, in the adrenal zona glomerulosa by both circulating factors and/or by locally derived endothelial factors. Arterial hypertension caused by volume overload is the leading clinical symptom indicating increased mineralocorticoid hormones. Excessive aldosterone production is seen in adenomatous disease of the adrenals. The balance between stimulatory/proliferative and antagonistic signaling is disturbed by expression of altered receptor subtypes in the adenomas. Increased aldosterone production without a detectable adenoma is the most frequent form of primary aldosteronism. Both increased sensitivity to agonistic signals and activating polymorphisms within the aldosterone synthase gene (CYP11B2) have been associated with excessive aldosterone production. 17alpha-Hydroxylase deficiency and glucocorticoidremediable aldosteronism can also cause excessive mineralocorticoid synthesis. In contrast, the severe form of pregnancy-induced hypertension, preeclampsia, is characterized by a compromised volume expansion in the presence of inappropriately low aldosterone levels. Initial evidence suggests that compromised CYP11B2 is causative, and that administration of NaCl lowered blood pressure in pregnant patients with low aldosterone availability due to a loss of function.
Resumo:
Patients with neurosurgical disorders often present with hyponatraemia. Two mechanisms account for hyponatraemia in these patients: the Syndrome of Inappropriate Secretion of Antidiuretic Hormone (SIADH) and Cerebral Salt Wasting Syndrome (CSWS). The two entities differ in their volume status. In SIADH, volume is expanded due to ADH-mediated renal water retention, but in CSWS, volume is diminished as a consequence of renal salt wasting, most likely attributable to an increased secretion of Brain Natriuretic Peptide (BNP) and Artrial Natriuretic Peptide (ANP). Since it is clinically difficult to distinguish between these two entities, fluid management has to be performed carefully. Salt and fluid replacement appears to be indicated in CSWS, whereas fluid restriction might be the primary approach in patients with SIADH.
Resumo:
Ascites and hyponatremia are frequent complications of advanced liver cirrhosis. Over 50 % of cirrhotic patients develop ascites and about one third gets hyponatremic. The development of ascites is due to an increased sodium retention in the kidneys, leading to expansion of extracellular volume and accumulation of fluid in the peritoneum. Hyponatremia is related to an impairment in the renal capacity to eliminate solute-free water that causes water retention that is disproportionate to the sodium retention, thus causing a reduction in serum sodium concentration. The exact pathogenesis of sodium retention is not clear, yet. The main pathogenic factor responsible for hyponatremia is a nonosmotic hypersecretion of vasopressin from the neurohypophysis. There is evidence suggesting that hyponatremia predisposes to hepatic encephalopathy. Impairment in glomerular filtration rate in hepatorenal syndrome is due to renal vasoconstriction. Treatment of ascites consists of potassium sparing diuretics, loop diuretics, and/or paracentesis. The current standard of care of hyponatremia based on fluid restriction is unsatisfactory. Currently, a new family of drugs, known as vaptans, which act by specifically antagonizing the effects of vasopressin on the V2 receptors located in the kidney, is evaluated for their role in the management of hyponatremia. Because data on long-term administration are still incomplete, they cannot be used routinely, yet. Liver transplantation is the treatment of choice for hepatorenal syndrome. As bridge to transplantation long-term administration of intravenous albumin and vasoconstrictors can be used.
Resumo:
Renal dysfunction represents a frequent comorbidity in patients with in chronic heart failure and is not only a strong predictor of mortality, but also causally linked to the development and progression of CHF. Mechanisms involved in the cross-talk between the kidney and the heart include the up-regulated sympathetic nerve system, activation of the renin-angiotensin-aldosterone system, vasopressin release and decreased activity of arterial baroreceptors and natriuretic peptides resulting in abnormal salt and water retention. The main therapeutic goals for patients with the so-called cardiorenal syndrome is the normalization of volume status while avoiding overdiuresis and renal dysfunction as well as the implementation of an evidence-based pharmacologic treatment to improve patient outcome. If these two goals are not achieved with conventional therapy, renal replacement therapy should be discussed in an interdisciplinary approach. All current renal replacement techniques have proved to be useful in controlling hypervolemia and ameliorating functional cardiac parameters and quality of life in patients with heart failure. Nevertheless, the influence of renal replacement therapy on long-term survival of affected patients has not been addressed in large controlled studies.
Resumo:
1 Natural soil profiles may be interpreted as an arrangement of parts which are characterized by properties like hydraulic conductivity and water retention function. These parts form a complicated structure. Characterizing the soil structure is fundamental in subsurface hydrology because it has a crucial influence on flow and transport and defines the patterns of many ecological processes. We applied an image analysis method for recognition and classification of visual soil attributes in order to model flow and transport through a man-made soil profile. Modeled and measured saturation-dependent effective parameters were compared. We found that characterizing and describing conductivity patterns in soils with sharp conductivity contrasts is feasible. Differently, solving flow and transport on the basis of these conductivity maps is difficult and, in general, requires special care for representation of small-scale processes.
Resumo:
In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.
Resumo:
The relative abundance of the heavy water isotopologue HDO provides a deeper insight into the atmospheric hydrological cycle. The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) allows for global retrievals of the ratio HDO/H2O in the 2.3 micron wavelength range. However, the spectroscopy of water lines in this region remains a large source of uncertainty for these retrievals. We therefore evaluate and improve the water spectroscopy in the range 4174–4300 cm−1 and test if this reduces systematic uncertainties in the SCIAMACHY retrievals of HDO/H2O. We use a laboratory spectrum of water vapour to fit line intensity, air broadening and wavelength shift parameters. The improved spectroscopy is tested on a series of ground-based high resolution FTS spectra as well as on SCIAMACHY retrievals of H2O and the ratio HDO/H2O. We find that the improved spectroscopy leads to lower residuals in the FTS spectra compared to HITRAN 2008 and Jenouvrier et al. (2007) spectroscopy, and the retrievals become more robust against changes in the retrieval window. For both the FTS and SCIAMACHY measurements, the retrieved total H2O columns decrease by 2–4% and we find a negative shift of the HDO/H2O ratio, which for SCIAMACHY is partly compensated by changes in the retrieval setup and calibration software. The updated SCIAMACHY HDO/H2O product shows somewhat steeper latitudinal and temporal gradients and a steeper Rayleigh distillation curve, strengthening previous conclusions that current isotope-enabled general circulation models underestimate the variability in the near-surface HDO/H2O ratio.
Resumo:
The mean transit time (MTT) of water in a catchment gives information about storage, flow paths, sources of water and thus also about retention and release of solutes in a catchment. To our knowledge there are only a few catchment studies on the influence of vegetation cover changes on base flow MTTs. The main changes in vegetation cover in the Swiss Alps are massive shrub encroachment and forest expansion into formerly open habitats. Four small and relatively steep headwater catchments in the Swiss Alps (Ursern Valley) were investigated to relate different vegetation cover to water transit times. Time series of water stable isotopes were used to calculate MTTs. The high temporal variation of the stable isotope signals in precipitation was strongly dampened in stream base flow samples. MTTs of the four catchments were 70 to 102 weeks. The strong dampening of the stable isotope input signal as well as stream water geochemistry points to deeper flow paths and mixing of waters of different ages at the catchments' outlets. MTTs were neither related to topographic indices nor vegetation cover. The major part of the quickly infiltrating precipitation likely percolates through fractured and partially karstified deeper rock zones, which increases the control of bedrock flow paths on MTT. Snow accumulation and the timing of its melt play an important role for stable isotope dynamics during spring and early summer. We conclude that, in mountainous headwater catchments with relatively shallow soil layers, the hydrogeological and geochemical patterns (i.e. geochemistry, porosity and hydraulic conductivity of rocks) and snow dynamics influence storage, mixing and release of water in a stronger way than vegetation cover or topography do.
Resumo:
Water-conducting faults and fractures were studied in the granite-hosted A¨ spo¨ Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175]. The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments. While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours–days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption Kds are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced.