45 resultados para Water in a agriculture

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

About one-sixth of the world’s land area, that is, about one-third of the land used for agriculture, has been affected by soil degradation in the historic past. While most of this damage was caused by water and wind erosion, other forms of soil degradation are induced by biological, chemical, and physical processes. Since the 1950s, pressure on agricultural land has increased considerably owing to population growth and agricultural modernization. Small-scale farming is the largest occupation in the world, involving over 2.5 billion people, over 70% of whom live below the poverty line. Soil erosion, along with other environmental threats, particularly affects these farmers by diminishing yields that are primarily used for subsistence. Soil and water conservation measures have been developed and applied on many farms. Local and science-based innovations are available for most agroecological conditions and land management and farming types. Principles and measures developed for small-scale as well as modern agricultural systems have begun to show positive impacts in most regions of the world, particularly in wealthier states and modern systems. Much more emphasis still needs to be given to small-scale farming, which requires external support for investment in sustainable land management technologies as an indispensable and integral component of farm activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the significance of ‘life-worlds’ for better understanding why farmers adopt or reject soil conservation measures and for identifying basic dimensions to be covered by social learning processes in Swiss agricultural soil protection. The study showed that farmers interpret soil erosion and soil conservation measures against the background of their entire life-world. By doing so, farmers consider abstract and symbolic meanings of soil conservation. This is, soil conservation measures have to be feasible and practical in the everyday farming routine, however, they also have to correspond with their aesthetic perception, their value system and their personal and professional identities. Consequently, by switching to soil conservation measures such as no-tillage farmers have to adapt not only the routines of their daily farming life, but also their perception of the aesthetics of cultivated land, underlying values and images of themselves. Major differences between farmers who adopt and farmers who reject no-tillage were found to depend on the degree of coherence they could create between the abstract and symbolic meanings of the soil conservation measure. From this perspective, implementation of soil protection measures faces the challenge of facilitating interactions between farmers, experts and scientists at a ‘deeper’ level, with an awareness of all significant dimensions that characterise the life-world. The paper argues that a certain level of shared symbolic meaning is essential to achieving mutual understanding in social learning processes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In her book 'Living on Light', Jasmuheen tries to animate people worldwide to follow her drastic nutrition rules in order to boost their quality of life. Several deaths have been reported as a fatal consequence. A doctor of chemistry who believably claimed to have been 'living on light' for 2 years, except for the daily intake of up to 1.5 l of fluid containing no or almost no calories was interested in a scientific study on this phenomenon. PARTICIPANT AND METHODS: The 54-year-old man was subjected to a rigorous 10-day isolation study with complete absence of nutrition. During the study he obtained an unlimited amount of tea and mineral water but had no caloric intake. Parameters to monitor his metabolic and psychological state and vital parameters were measured regularly and the safety of the individual was ensured throughout the study. The subject agreed on these terms and the study was approved by the local ethics committee.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The translational diffusion of water in compacted clays at a high hydration level has been investigated by quasielastic neutron scattering at a time-of-flight spectrometer FOCUS (SINQ). Four compacted clays with systematic structural differences have been studied: Na-montmorillonite, Na-illite, kaolinite and pyrophyllite. The QENS experiments were performed using two different incident wavelengths in order to access a larger Q range and verify the data analysis. The translational diffusion coefficient for water in Na-montmorillonite and Na-illite are lower than those for bulk water, whereas the preliminary results for kaolinite and pyrophyllite show larger diffusion coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The freezing behavior of water confined in compacted charged and uncharged clays (montmorillonite in Na-and Ca-forms, illite in Na-and Ca-forms, kaolinite and pyrophyllite) was investigated by neutron scattering. Firstly, the amount of frozen (immobile) water was measured as a function of temperature at the IN16 backscattering spectrometer, Institute Laue-Langevin (ILL). Water in uncharged, partly hydrophobic (kaolinite) and fully hydrophobic (pyrophyllite) clays exhibited a similar freezing and melting behavior to that of bulk water. In contrast, water in charged clays which are hydrophilic could be significantly supercooled. To observe the water dynamics in these clays, further experiments were performed using quasielastic neutron scattering. At temperatures of 250, 260 and 270 K the diffusive motion of water could still be observed, but with a strong reduction in the water mobility as compared with the values obtained above 273 K. The diffusion coefficients followed a non-Arrhenius temperature dependence well described by the Vogel-Fulcher-Tammann and the fractional power relations. The fits revealed that Na-and Ca-montmorillonite and Ca-illite have similar Vogel-Fulcher-Tammann temperatures (T-VFT, often referred to as the glass transition temperature) of similar to 120 K and similar temperatures at which the water undergoes the 'strong-fragile' transition, T-s similar to 210 K. On the other hand, Na-illite had significantly larger values of T-VFT similar to 180 K and T-s similar to 240 K. Surprisingly, Ca-illite has a similar freezing behavior of water to that of montmorillonites, even though it has a rather different structure. We attribute this to the stronger hydration of Ca ions as compared with the Na ions occurring in the illite clays.