42 resultados para Water and soil

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42−, HCO3−, Na+, and Cl−, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl− (from soil), SO42− (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl−. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 μg g−1 (median 2500 μg g−1) as compared to 187–14140 μg g−1 in soils (median 1148 μg g−1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, desertification research has focused on degradation assessments, whereas prevention and mitigation strategies have not sufficiently been emphasised, although the concept of sustainable land management (SLM) is increasingly being acknowledged. SLM strategies are interventions at the local to regional scale aiming at increasing productivity, protecting the natural resource base, and improving livelihoods. The global WOCAT initiative and its partners have developed harmonized frameworks to compile, evaluate and analyse the impact of SLM practices around the globe. Recent studies within the EU research project DESIRE developed a methodological framework that combines a collective learning and decision-making approach with use of best practices from the WOCAT database. In-depth assessment of 30 technologies and 8 approaches from 17 desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats such as water scarcity, soil and vegetation degradation, low production, climate change, resource use conflicts and migration. Among the impacts attributed to the documented technologies, those mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Water harvesting offers under-exploited opportunities for the drylands and the predominantly rainfed farming systems of the developing world. Recently compiled guidelines introduce the concepts behind water harvesting and propose a harmonised classification system, followed by an assessment of suitability, adoption and up-scaling of practices. Case studies go from large-scale floodwater spreading that make alluvial plains cultivable, to systems that boost cereal production in small farms, as well as practices that collect and store water from household compounds. Once contextualized and set in appropriate institutional frameworks, they can form part of an overall adaptation strategy for land users. More field research is needed to reinforce expert assessments of SLM impacts and provide the necessary evidence-based rationale for investing in SLM. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the new EU CASCADE project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate rainfall data are the key input parameter for modelling river discharge and soil loss. Remote areas of Ethiopia often lack adequate precipitation data and where these data are available, there might be substantial temporal or spatial gaps. To counter this challenge, the Climate Forecast System Reanalysis (CFSR) of the National Centers for Environmental Prediction (NCEP) readily provides weather data for any geographic location on earth between 1979 and 2014. This study assesses the applicability of CFSR weather data to three watersheds in the Blue Nile Basin in Ethiopia. To this end, the Soil and Water Assessment Tool (SWAT) was set up to simulate discharge and soil loss, using CFSR and conventional weather data, in three small-scale watersheds ranging from 112 to 477 ha. Calibrated simulation results were compared to observed river discharge and observed soil loss over a period of 32 years. The conventional weather data resulted in very good discharge outputs for all three watersheds, while the CFSR weather data resulted in unsatisfactory discharge outputs for all of the three gauging stations. Soil loss simulation with conventional weather inputs yielded satisfactory outputs for two of three watersheds, while the CFSR weather input resulted in three unsatisfactory results. Overall, the simulations with the conventional data resulted in far better results for discharge and soil loss than simulations with CFSR data. The simulations with CFSR data were unable to adequately represent the specific regional climate for the three watersheds, performing even worse in climatic areas with two rainy seasons. Hence, CFSR data should not be used lightly in remote areas with no conventional weather data where no prior analysis is possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To prospectively evaluate a 3-dimensional spoiled gradient-dual-echo (3D SPGR-DE) magnetic resonance imaging (MRI) sequence for the qualitative and quantitative analysis of liver fat content (LFC) in patients with the suspicion of fatty liver disease using histopathology as the standard of reference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This case series reports the correlation between extravascular lung water (EVLW) and the partial arterial oxygen pressure/fractional inspiratory oxygen (PaO(2)/FiO(2)) ratio in three patients with severe influenza A (H1N1)-induced respiratory failure. All patients suffered from grave hypoxia (PaO(2), 26-42 mmHg) and were mechanically ventilated using biphasic airway pressure (PEEP, 12-15 mmHg; FiO(2), 0.8-1) in combination with prone positioning at 12 hourly intervals. All patients were monitored using the PICCO system for 8-11 days. During mechanical ventilation, a total of 62 simultaneous determinations of the PaO(2)/FiO(2) ratio and EVLW were performed. A significant correlation between EVLW and the PaO(2)/FiO(2) ratio (Spearman-rho correlation coefficient, -0.852; p < 0.001) was observed. In all patients, a decrease in EVLW was accompanied by an improvement in oxygenation. Serum lactate dehydrogenase levels were elevated in all patients and significantly correlated with EVLW during the intensive care unit stay (Spearman-rho correlation coefficient, 0.786; p < 0.001). In conclusion, EVLW seems increased in patients with severe H1N1-induced respiratory failure and appears to be closely correlated with impairments of oxygenatory function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of water suppression for in vivo proton MR spectroscopy diminishes the signal intensities from resonances that undergo magnetization exchange with water, particularly those downfield of water. To investigate these exchangeable resonances, an inversion transfer experiment was performed using the metabolite cycling technique for non-water-suppressed MR spectroscopy from a large brain voxel in 11 healthy volunteers at 3.0 T. The exchange rates of the most prominent peaks downfield of water were found to range from 0.5 to 8.9 s(-1), while the T(1) relaxation times in absence of exchange were found to range from 175 to 525 ms. These findings may help toward the assignments of the downfield resonances and a better understanding of the sources of contrast in chemical exchange saturation transfer imaging.

Relevância:

100.00% 100.00%

Publicador: