5 resultados para Wall Components

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed studies of pharmacodynamic principles relevant to the therapy of bacterial meningitis are difficult to perform in man, while the rabbit model of bacterial meningitis has proved to be extremely valuable and has led to insights that appear relevant for the treatment of humans. Most importantly in the light of the restricted penetration of antibiotics into the CSF, animal studies have shown that in meningitis there is a dose-response curve between the CSF concentrations achieved by antibiotics and their bactericidal activity. This appears to be true for all classes of antibiotics thus far examined, including the beta-lactams, which do not show such a dose-response behaviour in other infections. Only CSF concentrations that exceed the MBC of the infecting organism by at least 10-30-fold achieve consistent and rapid bactericidal activity. Such rapid bactericidal activity is a requirement for successful therapy with beta-lactams and can be impaired with certain antibiotics by the specific conditions in infected CSF (protein content; acidic pH; slow-growing bacteria). However, rapid antibiotic killing of the infecting organisms may not be without adverse effects either. Some antibiotics, particularly beta-lactams lead to the brisk liberation of bacterial cell wall components (e.g. endotoxin, in the case of Gram-negative organisms) which have an inflammatory effect on the host and can lead to a temporary deterioration of the disease. Dexamethasone, when administered with the antibiotic, can prevent some of the adverse effects of rapid bacterial lysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial meningitis is characterized by an inflammation of the meninges and continues to be an important cause of mortality and morbidity. Meningeal cells cover the cerebral surface and are involved in the first interaction between pathogens and the brain. Little is known about the role of meningeal cells and the expression of antimicrobial peptides in the innate immune system. In this study we characterized the expression, secretion and bactericidal properties of rat cathelin-related antimicrobial peptide (rCRAMP), a homologue of the human LL-37, in rat meningeal cells after incubation with different bacterial supernatants and the bacterial cell wall components lipopolysaccharide (LPS) and peptidoglycan (PGN). Using an agar diffusion test, we observed that supernatants from meningeal cells incubated with bacterial supernatants, LPS and PGN showed signs of antimicrobial activity. The inhibition of rCRAMP expression using siRNA reduced the antimicrobial activity of the cell culture supernatants. The expression of rCRAMP in rat meningeal cells involved various signal transduction pathways and was induced by the inflammatory cytokines interleukin-1, -6 and tumor necrosis factor alpha. In an experimental model of meningitis, infant rats were intracisternally infected with Streptococcus pneumoniae and rCRAMP was localized in meningeal cells using immunohistochemistry. These results suggest that cathelicidins produced by meningeal cells play an important part in the innate immune response against pathogens in CNS bacterial infections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Toll-like receptor-2 (TLR2) mediates host responses to gram-positive bacterial wall components. TLR2 function was investigated in a murine Streptococcus pneumoniae meningitis model in wild-type (wt) and TLR2-deficient (TLR2(-/-)) mice. TLR2(-/-) mice showed earlier time of death than wt mice (P<.02). Plasma interleukin-6 levels and bacterial numbers in blood and peripheral organs were similar for both strains. With ceftriaxone therapy, none of the wt but 27% of the TLR2(-/-) mice died (P<.04). Beyond 3 hours after infection, TLR2(-/-) mice had higher bacterial loads in brain than did wt mice, as assessed with luciferase-tagged S. pneumoniae by means of a Xenogen-CCD (charge-coupled device) camera. After 24 h, tumor necrosis factor activity was higher in cerebrospinal fluid of TLR2(-/-) than wt mice (P<.05) and was related to increased blood-brain barrier permeability (Evans blue staining, P<.02). In conclusion, the lack of TLR2 was associated with earlier death from meningitis, which was not due to sepsis but to reduced brain bacterial clearing, followed by increased intrathecal inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatocyte growth factor (HGF) is involved in development and regeneration of the lungs. Human HGF, which was expressed specifically by alveolar epithelial type II cells after gene transfer, attenuated the bleomycin-induced pulmonary fibrosis in an animal model. As there are also regions that appear morphologically unaffected in fibrosis, the effects of this gene transfer to normal lungs is of interest. In vitro studies showed that HGF inhibits the formation of the basal lamina by cultured alveolar epithelial cells. Thus we hypothesized that, in the healthy lung, cell-specific expression of HGF induces a remodeling within septal walls. Electroporation of a plasmid of human HGF gene controlled by the surfactant protein C promoter was applied for targeted gene transfer. Using design-based stereology at light and electron microscopic level, structural alterations were analyzed and compared with a control group. HGF gene transfer increased the volume of distal air spaces, as well as the surface area of the alveolar epithelium. The volume of septal walls, as well as the number of alveoli, was unchanged. Volumes per lung of collagen and elastic fibers were unaltered, but a marked reduction of the volume of residual extracellular matrix (all components other than collagen and elastic fibers) and interstitial cells was found. A correlation between the volumes of residual extracellular matrix and distal air spaces, as well as total surface area of alveolar epithelium, could be established. Cell-specific expression of HGF leads to a remodeling of the connective tissue within the septal walls in the healthy lung, which is associated with more pronounced stretching of distal air spaces at a given hydrostatic pressure during instillation fixation.