2 resultados para WOOD DECAY FUNGI

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Land use and land use change affect deadwood amount, quality and associated biodiversity in forest ecosystems. Old growth or virgin forests, which are exceptionally rare in temperate Europe harbor more deadwood and associated fungal species than managed forests. Whether and how more recent abandonment of management, to reestablish more natural forests, affects deadwood amount and fungal diversity on deadwood is unknown. Our main aim was to compare deadwood amount, characteristics and deadwood inhabiting fungi in differently managed forest types typical for large areas of Central Europe. We sampled deadwood inhabiting fungi on 27 forest plots of 400 m2 each in three geographically distant regions in Germany. Three forest management types, namely managed coniferous, managed deciduous and unmanaged deciduous forests, were represented by nine plots each. In autumn 2008 we collected all fungal fruiting bodies on deadwood >7 cm of diameter. We found deadwood amounts and fungal species numbers in unmanaged forests to be lower than in managed forests, which we attributed to the lack of natural tree death during the short time since management abandonment of usually 10–30 years. However, rarefaction analysis among deadwood items in forest plots indicated a slightly higher species density in unmanaged forests, which may be the first signal of a positive effect on fungal species richness on deadwood after management was abandoned. Although the three study regions span a large geographical gradient, we did not detect differences in the fungal species composition or in deadwood amounts and patterns, which reflects the wide distribution of this group of organisms and points to consistent management procedures among study regions. A very clear composition difference however occurred between deciduous and coniferous wood showing species substrate specialization. We conclude that the amount of deadwood is the main driver of deadwood fungal species richness, and substrate diversity in terms of various decay degrees, deadwood tree species and deadwood size are also important. Thus, to promote species richness of deadwood fungi it is vital to enhance deadwood amounts and diversity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arctic environments, where surface temperatures increase and sea ice cover and permafrost depth decrease, are very sensitive to even slight climatic variations. Placing recent environmental change of the high-northern latitudes in a long-term context is, however, complicated by too short meteorological observations and too few proxy records. Driftwood may represent a unique cross-disciplinary archive at the interface of marine and terrestrial processes. Here, we introduce 1445 driftwood remains from coastal East Greenland and Svalbard. Macroscopy and microscopy were applied for wood anatomical classification; a multi-species subset was used for detecting fungi; and information on boreal vegetation patterns, circumpolar river systems, and ocean current dynamics was reviewed and evaluated. Four conifer (Pinus, Larix, Picea, and Abies) and three deciduous (Populus, Salix, and Betula) genera were differentiated. Species-specific identification also separated Pinus sylvestris and Pinus sibirica, which account for ~40% of all driftwood and predominantly originate from western and central Siberia. Larch and spruce from Siberia or North America represents ~26% and ~18% of all materials, respectively. Fungal colonization caused different levels of driftwood staining and/or decay. Our results demonstrate the importance of combining wood anatomical knowledge with insight on boreal forest composition for successfully tracing the origin of Arctic driftwood. To ultimately reconstruct spatiotemporal variations in ocean currents, and to better quantify postglacial uplift rates, we recommend consideration of dendrochronologically dated material from many more circumpolar sites.