17 resultados para WATER-STRESS INDEX
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
There is increasing recognition that transdisciplinary approaches are needed to create suitable knowledge for sustainable water management. However, there is no common understanding of what transdisciplinary research may be and there is very limited debate on potentials and challenges regarding its implementation. Against this background, this paper presents a conceptual framework for transdisciplinary co-production of knowledge in water management projects oriented towards more sustainable use of water. Moreover, first experiences with its implementation are discussed. In so doing, the focus lies on potentials and challenges related to the co-production of systems, target and transformation knowledge by researchers and local stakeholders.
Resumo:
Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Resumo:
Recent observed hydro-climatic changes in mountainous areas are of concern as they may directly affect capacity to fulfill water needs. The canton of Vaud in Western Switzerland is an example of such a region as it has experienced water shortage episodes during the past decade. Based on an integrated modeling framework, this study explores how hydro-climatic conditions and water needs could evolve in mountain environments and assesses their potential impacts on water stress by the 2060 horizon. Flows were simulated based on a daily semi-distributed hydrological model. Future changes were derived from Swiss climate scenarios based on two regional climate models. Regarding water needs, the authorities of the canton of Vaud provided a population growth scenario while irrigation and livestock trends followed a business-as-usual scenario. Currently, the canton of Vaud experiences moderate water stress from June to August, except in its Alpine area where no stress is noted. In the 2060 horizon, water needs could exceed 80% of the rivers' available resources in low- to mid-altitude environments in mid-summer. This arises from the combination of drier and warmer climate that leads to longer and more severe low flows, and increasing urban (+ 40%) and irrigation (+ 25%) water needs. Highlighting regional differences supports the development of sustainable development pathways to reduce water tensions. Based on a quantitative assessment, this study also calls for broader impact studies including water quality issues.
Resumo:
OBJECTIVE: Acute mental stress elicits blood hypercoagulability. Following a transactional stress model, we investigated whether individuals who anticipate stress as more threatening, challenging, and as exceeding their coping skills show greater stress reactivity of the coagulation activation marker D-dimer, indicating fibrin generation in plasma. METHODS: Forty-seven men (mean age 44 +/- 14 years; mean blood pressure [MBP] 101 +/- 12 mm Hg; mean body mass index [BMI] 26 +/- 3 kg/m(2)) completed the Primary Appraisal Secondary Appraisal (PASA) scale before undergoing the Trier Social Stress Test (combination of mock job interview and mental arithmetic task). Heart rate, blood pressure, plasma catecholamines, and D-dimer levels were measured before and after stress, and during recovery up to 60 minutes poststress. RESULTS: Hemodynamic measures, catecholamines, and D-dimer changed across all time points (p values <.001). The PASA "Stress Index" (integrated measure of transactional stress perception) correlated with total D-dimer area under the curve (AUC) between rest and 60 minutes poststress (r = 0.30, p = .050) and with D-dimer change from rest to immediately poststress (r = 0.29, p = .046). Primary appraisal (combined "threat" and "challenge") correlated with total D-dimer AUC (r = 0.37, p = .017), D-dimer stress change (r = 0.41, p = .004), and D-dimer recovery (r = 0.32, p = .042). "Challenge" correlated more strongly with D-dimer stress change than "threat" (p = .020). Primary appraisal (DeltaR(2) = 0.098, beta = 0.37, p = .019), and particularly its subscale "challenge" (DeltaR(2) = 0.138, beta = 0.40, p = .005), predicted D-dimer stress change independently of age, BP, BMI, and catecholamine change. CONCLUSIONS: Anticipatory cognitive appraisal determined the extent of coagulation activation to and recovery from stress in men. Particularly individuals who anticipated the stressor as more challenging and also more threatening had a greater fibrin stress response.
Resumo:
This study examines the validity of the assumption that international large-scale land acquisition (LSLA) is motivated by the desire to secure control over water resources, which is commonly referred to as ‘water grabbing’. This assumption was repeatedly expressed in recent years, ascribing the said motivation to the Gulf States in particular. However, it must be considered of hypothetical nature, as the few global studies conducted so far focused primarily on the effects of LSLA on host countries or on trade in virtual water. In this study, we analyse the effects of 475 intended or concluded land deals recorded in the Land Matrix database on the water balance in both host and investor countries. We also examine how these effects relate to water stress and how they contribute to global trade in virtual water. The analysis shows that implementation of the LSLAs in our sample would result in global water savings based on virtual water trade. At the level of individual LSLA host countries, however, water use intensity would increase, particularly in 15 sub-Saharan states. From an investor country perspective, the analysis reveals that countries often suspected of using LSLA to relieve pressure on their domestic water resources—such as China, India, and all Gulf States except Saudi Arabia—invest in agricultural activities abroad that are less water-intensive compared to their average domestic crop production. Conversely, large investor countries such as the United States, Saudi Arabia, Singapore, and Japan are disproportionately externalizing crop water consumption through their international land investments. Statistical analyses also show that host countries with abundant water resources are not per se favoured targets of LSLA. Indeed, further analysis reveals that land investments originating in water-stressed countries have only a weak tendency to target areas with a smaller water risk.
Resumo:
Although the recycling of municipal wastewater can play an important role in water supply security and ecosystem protection, the percentage of wastewater recycled is generally low and strikingly variable. Previous research has employed detailed case studies to examine the factors that contribute to recycling success but usually lacks a comparative perspective across cases. In this study, 25 water utilities in New South Wales, Australia, were compared using fuzzy-set Qualitative Comparative Analysis (fsQCA). This research method applies binary logic and set theory to identify the minimal combinations of conditions that are necessary and/or sufficient for an outcome to occur within the set of cases analyzed. The influence of six factors (rainfall, population density, coastal or inland location, proximity to users; cost recovery and revenue for water supply services) was examined for two outcomes, agricultural use and "heavy" (i.e., commercial/municipal/industrial) use. Each outcome was explained by two different pathways, illustrating that different combinations of conditions are associated with the same outcome. Generally, while economic factors are crucial for heavy use, factors relating to water stress and geographical proximity matter most for agricultural reuse. These results suggest that policies to promote wastewater reuse may be most effective if they target uses that are most feasible for utilities and correspond to the local context. This work also makes a methodological contribution through illustrating the potential utility of fsQCA for understanding the complex drivers of performance in water recycling.
Resumo:
The dynamics of aseasonal lowland dipterocarp forest in Borneo is influenced by perturbation from droughts. These events might be increasing in frequency and intensity in the future. This paper describes drought-affected dynamics between 1986 and 2001 in Sabah, Malaysia, and considers how it is possible, reliably and accurately, to measure both coarse- and fine-scale responses of the forest. Some fundamental concerns about methodology and data analysis emerge. In two plots forming 8 ha, mortality, recruitment, and stem growth rates of trees ≥10 cm gbh (girth at breast height) were measured in a ‘pre-drought’ period (1986–1996), and in a period (1996–2001) including the 1997–1998 ENSO-drought. For 2.56 ha of subplots, mortality and growth rates of small trees (10–<50 cm gbh) were found also for two sub-periods (1996–1999, 1999–2001). A total of c. 19 K trees were recorded. Mortality rate increased by 25% while both recruitment and relative growth rates increased by 12% for all trees at the coarse scale. For small trees, at the fine scale, mortality increased by 6% and 9% from pre-drought to drought and on to ‘post-drought’ sub-periods. Relative growth rates correspondingly decreased by 38% and increased by 98%. Tree size and topography interacted in a complex manner with between-plot differences. The forest appears to have been sustained by off-setting elevated tree mortality by highly resilient stem growth. This last is seen as the key integrating tree variable which links the external driver (drought causing water stress) and population dynamics recorded as mortality and recruitment. Suitably sound measurements of stem girth, leading to valid growth rates, are needed to understand and model tree dynamic responses to perturbations. The proportion of sound data, however, is in part determined by the drought itself.
Resumo:
Semi-arid ecosystems play an important role in regulating global climate with the fate of these ecosystems in the Anthropocene depending upon interactions among temperature, precipitation, and CO2. However, in cool-arid environments, precipitation is not the only limitation to forest productivity. Interactions between changes in precipitation and air temperature may enhance soil moisture stress while simultaneously extending growing season length, with unclear consequences for net carbon uptake. This study evaluates recent trends in productivity and phenology of Inner Asian forests (in Mongolia and Northern China) using satellite remote sensing, dendrochronology, and dynamic global vegetation model (DGVM) simulations to quantify the sensitivity of forest dynamics to decadal climate variability and trends. Trends in photosynthetically active radiation fraction (FPAR) between 1982 and 2010 show a greening of about 7% of the region in spring (March, April, May), and 3% of the area ‘browning’ during summertime (June, July, August). These satellite observations of FPAR are corroborated by trends in NPP simulated by the LPJ DGVM. Spring greening trends in FPAR are mainly explained by long-term trends in precipitation whereas summer browning trends are correlated with decreasing precipitation. Tree ring data from 25 sites confirm annual growth increments are mainly limited by summer precipitation (June, July, August) in Mongolia, and spring precipitation in northern China (March, April, May), with relatively weak prior-year lag effects. An ensemble of climate projections from the IPCC CMIP3 models indicates that warming temperatures (spring, summer) are expected to be associated with higher summer precipitation, which combined with CO2 causes large increases in NPP and possibly even greater forest cover in the Mongolian steppe. In the absence of a strong direct CO2 fertilization effect on plant growth (e.g., due to nutrient limitation), water stress or decreased carbon gain from higher autotrophic respiration results in decreased productivity and loss of forest cover. The fate of these semi-arid ecosystems thus appears to hinge upon the magnitude and subtleties of CO2 fertilization effects, for which experimental observations in arid systems are needed to test and refine vegetation models.
Resumo:
Occasional strong droughts are an important feature of the climatic environment of tropical rain forest in much of Borneo. This paper compares the response of a lowland dipterocarp forest at Danum, Sabah, in a period of low (LDI) and a period of high (HDI) drought intensity (1986-96, 9.98 y;1996-99, 2.62 y). Mean annual drought intensity was two-fold higher in the HDI than LDI period (1997 v. 976 mm), and each period had one moderately strong main drought (viz. 1992, 1998). Mortality of `all' trees greater than or equal to 10 cm gbh (girth at breast height) and stem growth rates of `small' trees 10less than or equal to50 cm gbh were measured in sixteen 0.16-ha subplots (half on ridge, half on lower slope sites) within two 4-ha plots. These 10-50-cm trees were composed largely of true understorey species. A new procedure was developed to correct for the effect of differences in length of census interval when comparing tree mortality rates. Mortality rates of small trees declined slightly but not significantly between the LDI and HDI periods (1.53 to 1.48% y(-1)): mortality of all trees showed a similar pattern. Relative growth rates declined significantly by 23% from LDI to HDI periods (11.1 to 8.6 mm m(-1) y(-1)): for absolute growth rates the decrease was 28% (2.45 to 1.77 mm y(-1)). Neither mortality nor growth rates were significantly influenced by topography. For small trees, across subplots, absolute growth rate was positively correlated in the LDI period, but negatively correlated in the HDI period, with mortality rate. There was no consistent pattern in the responses among the 19 most abundant species (n greater than or equal to 50 trees) which included a proposed drought-tolerant guild. In terms of tree survival, the forest at Danum was resistant to increasing drought intensity, but showed decreased stem growth attributable to increasing water stress.
Resumo:
The induction of plant defences and their subsequent suppression by insects is thought to be an important factor in the evolutionary arms race between plants and herbivores. Although insect oral secretions (OS) contain elicitors that trigger plant immunity, little is known about the suppressors of plant defences. The Arabidopsis thaliana transcriptome was analysed in response to wounding and OS treatment. The expression of several wound-inducible genes was suppressed after the application of OS from two lepidopteran herbivores, Pieris brassicae and Spodoptera littoralis. This inhibition was correlated with enhanced S. littoralis larval growth, pointing to an effective role of insect OS in suppressing plant defences. Two genes, an ERF/AP2 transcription factor and a proteinase inhibitor, were then studied in more detail. OS-induced suppression lasted for at least 48 h, was independent of the jasmonate or salicylate pathways, and was not due to known elicitors. Interestingly, insect OS attenuated leaf water loss, suggesting that insects have evolved mechanisms to interfere with the induction of water-stress-related defences.
Resumo:
Background Whole-body water immersion leads to a significant shift of blood from the periphery into the intra-thoracic circulation, followed by an increase in central venous pressure and heart volume. In patients with severely reduced left ventricular function, this hydrostatically in-duced volume shift might overstrain the cardiovascular adaptive mechanisms and lead to cardiac decompensation. The aim of this study is to assess the hemodynamic response to water immer-sion, gymnastics and swimming in patients with heart failure (CHF). Methods We examined 10 patients with compensated CHF (62.9 +/- 6.3 years, EF 31.5 +/- 4.1%, peak VO2 19.4 +/- 2.8 ml/kg/min.), 10 patients with coronary artery disease (CAD) but preserved left ventricular function (57.2 +/- 5.6 years, EF 63.9 +/- 5.5%, peak VO2 28.0 +/- 6.3 ml/kg/min.) and 10 healthy subjects (32.8 +/- 7.2 years, peak VO2 45.6 +/- 6.0 ml/kg/min.). Hemodynamic response to thermo-neutral (32 degrees C) water immersion and exercise was measured using a non-invasive foreign gas rebreathing method during stepwise water immersion, water gymnastics and swimming. Results Water immersion up to the chest increased cardiac index by 19% in healthy subjects, by 21% in CAD patients and 16% in CHF patients. While some CHF patients showed a decrease of stroke volume during immersion, all subjects were able to increase cardiac index (by 87% in healthy subjects, 77% in CAD patients and 53% in CHF patients). Oxygen uptake during swim-ming was 9.7 +/- 3.3 ml/kg/min. in CHF patients, 12.4 +/- 3.5 ml/kg/min. in CAD patients and 13.9 +/- 4.0 ml/kg/min. in healthy subjects. Conclusions Patients with severely reduced left ventricular function but stable clinical conditions and a minimal peak VO2 of at least 15 ml/kg/min. during a symptom-limited exercise stress test tolerate water immersion and swimming in thermo-neutral water well. Although cardiac in-dex and oxygen uptake are lower compared with CAD patients with preserved left ventricular function and healthy controls, these patients are able to increase cardiac index adequately during water immersion and swimming.